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In a four-dimensional Lorentzian manifold in which Einstein's gravitational field equations hold with 
the field produced by pressure free dust, a significant set of new solutions is found. Assuming that the 
manifold possesses a four parametric group of isometries of type 5 in Bianchi's classification, which act on 
a three-dimensional negative definite subspace, all metrics are found. The solutions are unusual in that 
the geodesics which the particles follow are not orthogonal to the three-dimensional negative-definite 
subsl'ace so that the space will not appear homogeneous to these observers. The isotropic expansion is 
nonzero for almost all these solutions. 

I. INTRODUCTION 

I N the four-dimensional Lorentzian manifold M we 
impose Einstein's general relativistic field equa­

tions. We assume that the source of the gravitational 
field is incoherent matter (dust). The field equations 
are written 

vector field of M. The algebras of these vectors possess 
canonical forms. 

If Xa (a = 1,2,3,4) are the four Killing-vector 
fields, then the bracket of two of them at a point of M 

[Xa, X b] = XaXb - XbXa 

(1.1) can be written 

where gab is the metric tensor, Rab is the Ricci tensor, 
R = R~, A is the cosmological constant, p is the 
density of the dust so that p > 0, and ua is the 4-
velocity of the matter so that uaua = + 1. We assume 
that galaxies are the dust particles and that a model 
of the universe can be described by the solutions to 
Eq. (1.1). 

These equations are too difficult to solve in general. 
As is often done,l we assume that the universe has 
some symmetries in order to simplify the equations. 
We assume here that M allows a four parametric 
group of isometries. Each one parametric subgroup 
generates a vector field which is said to be a Killing-

1 J. Ehlers and W. Kundt, in Gravitation, L. Witten, Ed. (John 
Wiley & Sons, Inc., New York, 1962), p. 49. 

[Xa, Xb] = C~bXc· 

The qc are 24 quantities which are constants with 
respect to coordinate transformations and are called 
the constants of structure of the group. The algebra 
of the Xa is determined by the qc up to isomorphisms. 
Here we investigate Bianchi type 5. 2 The structure 
constants are given by 

[Xa , Xl] = -Xl' 
(1.2) 

[Xl' X4] = X2 , [X2 , X4] = -Xl' [Xa , X4] = 0. 
(1.3) 

• L. Bianchi, Lezioni sulla teoria dei gruppi continui jiniti di 
trasformazioni (Spoerri, Pisa, 1918). 
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Since all solutions to Eq. (1.1) have been found with 
the four Killing vectors spanning the tangent space 
at each point of M,3 we assume that the Killing vectors 
span a three~dimensional subspace of the tangent 
space at each point of M which has a negative~definite 
metric; that is, space is homogeneous. This implies 
that the physics at every point in space is the same 
for each time. The metric and the Killing vectors can 
then be given the following form4 solely on the con~ 
dition imposed by Eqs. (1.2) and (1.3): 

ds2 = A(t) dx2 + B(t)e2"'(dl + dz2) + dt2, 

o x--
1 - oy' 

o 
X 2 =-, oz 

a a a 
Xa= --+y-+Z-, ox oy OZ 

a a 
X4 = -z-+y-. oy oz 

Heckmann and Schiicking5 have given a set of 
solutions to the dust field equations having three 
Killing vectors satisfying Eq. (1.2). However, these 
solutions as given do not allow a fourth Killing vector 
satisfying Eq. (1.3). 

II. CHANGE OF COORDINATES 

The metric is invariant under the isometries. Since 
Ua can be written in terms of gab by Eq. (1.1), Ua is 
invariant with respect to the isometries, that is, 

[Xb, ua
] = O. 

This forces ua to have the form 

a a 
ua = OC(t) - + (3(t) - , ox at 

then 
u" = A (t)oc(t) dx + (3(t) dt. 

The twice-contracted Bianchi identities 

imply that 
(2.1) 

that is, the galaxies move along geodesics. A semicolon 
indicates covariant differentiation so that 

3 D. Farnsworth and R. Kerr, J. Math. Phys. 7, 1625 (1966). 
• A. S. Petrov, Einstein-RaOme translated by H. Treder (Akademie­

Verlag, Berlin, 1964). 
6 E. Schiicking and O. Heckmann, Article in Institut International 

de Physique Solvay, Onzieme Conseil de Physique (Editions Stoops, 
Brussels, 1959); O. Heckmann and E. Schucking, in Gravitation, 
L. Witten, Ed. (John Wiley & Sons, Inc., New York, 1962), p. 445. 

where a comma denotes partial differentiation and 

is the connection. Equation (2.1) along with 

uaua = A(t)oc2(t) + (32(t) = 1 

gives A(t)oc(t) = C, a constant. 
Therefore, unless oc(t) = 0, the dust follows geo~ 

desics which are not orthogonal to the 3~spaces of 
homogeneity. Therefore, although the 3~spaces are 
homogeneous, they will not look homogeneous to 
observers traveling with the dust. 

We perform the change of coordinates 

r =J oc(t) dt - x 
(3(t) , 

j = y, z = z, 

T = J (3(t) dt + A(t)oc(t)x, 

in order to orient ua in the time direction. Then 

a 
Ua = aT' 

ds2 = -X2(r, T)(dr)2 - y2(r, 7')(dj2 + dz2) + (dT)2, 

a 
X 2 =-, 

oz 

X C o a ~o+ 3=- -+-+y-aT or oj 

X ~+-~ 
4 = - oj Yoz' 

a 
oz' 

(2.2) 

The metric in this form is very similar to a metric 
considered by Bondi. 6 

We now derive expressions for X(r, T) and Y(r, T) 
from Killing's equations and the field equations. 
Killing's equations 

Xa,b - Xb,a = 2r!bX d 

are the necessary and sufficient conditions that X is 
a vector field generated by an isometry. 7 The only 
new conditions which this gives are 

-CX+X'=O, 

-ct + y' + Y = 0, (2.3) 

where a dot over a letter means a/aT and a prime 

6 H. Bondi, Monthly Notices 107, 410 (1947). 
7 L. P. Eisenhart, Continuous Groups of Transformations (Dover 

Publications, Inc., New York, 1963), p. 208. 
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means alar. These equations imply that 

X=X(Cr+T); Y=g(Cr+T)exp(-r) (2.4) 

for all C. 

III. FIELD EQUATIONS AND 
SOLUTIONS FOR Y' '" 0 

The field equations for the metric, Eq. (2.2), are 

x Y y2 1 (Y" y,2 X' Y') 2--+--- 2-+--2-- =A+p 
X Y y2 X 2 Y y2 X Y , 

(3.1) 

X f XY 1 (Y" X'Y') 
X + Y + XY - X2 Y - xy = A, (3.3) 

Y'_ Xy' = O. 
X 

(3.4) 

Equation (3.4) gives immediately 

X(r, T) = G(r) Y'(r, T) (3.5) 

if Y' :;!: O. We consider Y' = 0 separately in Sec. IV. 
Substituting Y = grr and X = G(ge-r

)' into Eq. (2.3) 
yields G(r) = Ge+r

, where G is a constant. We now 
have 

X= G(g' -g), 

Y = ge-r, g = g(Cr + T). 

The field equation (3.2) yields 

2gg + g2 - Ag2 - (1/G2) = O. (3.6) 

The field equation (3.3) reduces to the same equation 
and Eq. (3.1) yields 

p = -6. (g _ tAg). 
g - Cg 

If A = 0 and g :;!: 0 (i.e., p ~ 0), the same time 
derivative of Eq. (3.6) and Cg = g' give 

(3.7) 

a nonzero constant. Equations (3.6) and (3.7) imply 

g2 = -2D(l/g) + (1/G2), 

the Friedmann equation. 

IV. SOLUTIONS WITH Y' = 0 

If Y' = 0, then Eqs. (2.4) become 

X= X(Cr + T), 

Y = E exp (T/C), 

where E is a constant. The field equation (3.2) implies 
A = 3/C2 so that there are no solutions for A ~ 0 or 
C = O. Equation (3.3) gives 

X(x, T) = M exp (TIC + r) + N exp (-2T/C - 2r), 

where M and N are constants. Finally, Eq. (3.1) implies 

p = ~~[ (~) exp 3(~T + r) + ITl 
and N :;!: O. If N = 0, then p = O. 

V. PROPERTIES OF SOLUTIONS 

Three quantities are defined for the timelike tangent 
vector to the geodesic flow lines of the dust,! Since 
these are tensor quantities, if they vanish in one co­
ordinate system they vanish in all coordinate systems. 
They are isotropic expansion (ufa)' shear 

[U(a;b) - tufc(gab - uaub)], 

and rotation (U[a;bj)' For all our solutions rotation 
vanishes. 

Shear vanishes if and only if C = 0, g = 0 or 
g = Fg for F a constant, and Y':;!: O. If C = 0, ex­
pansion is 3g/g and these are Friedmann models 
since Friedmann models are characterized by vanish­
ing rotation and shear. If g = Fg and F:;!: l/C, these 
are also Friedmann models with expansion 3F in this 
coordinate system. If g = 0, p < O. Shear is non­
vanishing for all solutions with Y' = 0, and expansion 
vanishes if and only if M = O. However, M = 0 
implies p < O. 

In general, for Y':;!: 0 isotropic expansion is 
(XI X) + 2( Y/ Y) and vanishes if and only if 

Cgg - 3gg + 2Cg2 = O. (5.1) 

If C ::;:: 0, then g = 0 and p = tA. This is the Einstein 
cosmos. If C :;!: 0, the solution to Eq. (5.1) does not 
satisfy Eq. (3.6). Therefore only one of our model 
universes does not possess isotropic expansion, a 
property which the observable universe possesses. 
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Invariant imbedding equations for the Green's function of a general linear operator are shown to 
derive from a generalization of the resolvent equation of the theory of operators. Two applications are 
given: the neutron, or photon, transport in an arbitrary finite body, and the quantum-mechanical theory 
of collision. In the last case, a nonlinear differential equation for the amplitude of transition TPrJ. from a 
channel IX to a channel fJ with conservation of the total energy is derived from the general equation. 

.1. INTRODUCTION and for a value a~i), we have 

for any 
R(p, T(rx~i»)(pI - T(a~i»)) = J (2) 

(2a) 

THE problem of deriving invariant imbedding 
equations in a way other than "particle counting", 

and of generalizing them to problems other than 
transport problems, has been paid much attention 
recently. Bellman and Kalabal have proposed a 
perturbation procedure. Devooght has proposed two 
approaches to the generalization of the Hadamard 
variational formula, one2 which generalizes an 
identity of Cases leading to various reciprocity princi­
ples, another' based on a variational principle. 

Multiplying Eq. (1) to the left by R(p, T(a~i») and 
Eq. (2) to the right by R(A, T( a~i)), and subtracting 
the second from the first, we obtain 

The aim of this paper is to show that the invariant 
imbedding equations and the Hadamard variational 
formula are nothing more than a generalization of the 
well-known "resolvent equation" of the theory of 
linear operators.s 

In Sec. 2, we show that there is an identity satisfied 
by any two resolvent operators connected with 
problems belonging to an n-parameter family. This 
identity first, yields the classical resolvent equation, 
and second, the invariant imbedding equations with 
respect to any of the parameters. 

In Sec. 3, we apply this to a few problems in trans­
port theory, and show that we obtain the invariant 
imbedding equation (or Hadamard formula) derived 
by Devooght.2 

In Sec. 4 we apply our equation to a problem of 
scattering theory. 

2. THE GENERALIZED RESOLVENT 
EQUATION 

Let T(a(i» = T(a(O), •.• a("» be an operator 
pending on n independent parameters aW • 

For a value a~i) of the parameters, we have 

(U - T(a~i»))R(A, T(aii ») = I 

de-

(1) 

.. On leave from Universite Libre de Bruxelles, Brussels, Belgium. 
1 R. Bellman and R. Kalaba, Proe. Natl. Aead. Sci. U.S.A. 47, 

336 (1961). 
• J. Devooght, I. Math. Anal.Appl. 13,216 (1966). 
a K. M. Case, Rev. Mod. Phys. 24, 651 (1957). 
'I. Devooght, J. Math. Phys. 7, 1764 (1966). 

(A - p)R(P, T(IX~i))R(A, T(a~i)) 

- R(p, T(a~i»)[T(a~i» - T(a~i»]R(A, T(aii ») 
(i) (i) == R(P, T(a2 » - R(A, T(al ». (3) 

Identity (3) generalizes the classical resolvent equation 
(5), which can be obtained from it by making aii) = 
a~i). We then have 

(A - p)R(p, T)R(A, T) = R(p, T) - R(A, T) (4) 

or, by writing 
p=it+dA, 

R( T) = R(A T) + oRCA, T) dA p, , OA' 

OR(A, T) = _R2(A, T). 
OA 

(5) 

(7) 

(8) 

6 N. Dunford and J. T. Schwartz, Linear Operators"Part 1: General 
Theory (Interscience Publishers, Inc., New York, 1958), p. 568. Because of the independence of the parameters, we 
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can write this variational formula as a set of differ­
ential equations, 

M(A, T( IX{;)) = R(A T( (i)) dT( 1X(i) R(A T( (i)) (9) 
dlX(iJ ,IX dlXw ,IX 

which are the invariant imbedding equations for the 
problem. We have, in order to apply them to a specific 
problem, to take care that relations (2a) are satisfied 
and, if T is a differential operator, that the derivative 
dT(a.<il)/dIXU) takes into account the variation of the 
boundary condition with the parameter IX (j). 

3. APPliCATION TO MONOENERGETIC 
NEUTRON TRANSPORT THEORY 

The monoenergetic Boltzmann operator is 

B = 0.f). +O'(f)' -c(f)O'(r) f/(0., 0.,). d0.', (10) 

where O'(r) is the total cross section, c(r) is the average 
number of secondaries per collision, and j(0., 0.') is 
the probability that a neutron moving in direction 0. 
be scattered in direction 0.'. We know that A = 0 is in 
the resolvent set of the Boltzmann operator, provided 
that c(f) ~ 1 and c(r) -- 0 sufficiently fast for Ir 1 -- 00. 

We will take as-boundary condition that "P(r, 0.) -- 0 
for \rl-- 00. 

A. Geometrical Imbedding with Fixed-Point Sources 

Consider an elementary source f~ == b(r - fo)d(0. -
0.0); we have by definition of the Green's function 

gp(f, 0.1 fo, 0.0) = -R(O, B)f6' (11) 

and for any vector u == 4>(fo, 0.0), 

R(O, B)u = - ff dVo d0.ogif , 0.1 ro, 0.o)4>(fo, 0.0), 

(12) 

Let us now consider that c(f) and O'(r) are zero outside 
a volume limited by the surface S)., and choose A as the 
imbedding parameter. (In what follows, A will be an 
imbedding parameter and no longer the spectral 
parameter.) We can then write 

O'(r) == O'(r)[1 - U(f, A)]. (13) 
With 

U(f, A) = ° f INSIDE THE SURFACE S). 
1 f OUTSIDE THE SURFACE S)., 

we have 

bU(f, A) = -b(f _ f ,) dn(f, A) (14) 
bA s" bA ' 

b(f - f8) being a: surface Dirac function and (bn(f, A)/ 

bA)dA the normal displacement of the point f. Then, 

bB ( ) bn(f, A) .Q(_ _) -=O'r--ur-r 
bA bA 8). 

and 

x [1 - c(f) f/(0., 0.,). dO.} (15) 

bgif, 0.1 ro, 0.0) 

bA 

= -II dV' do.'gp(f, 0.1 f', 0.')0'(f') 

bn(f', A) b(-' _ - ). [ (-' 0.' 1 - 0.) x bA r r8). gp r , ro, n 

- c(f) f l (0.', 0.")gif ', 0."1 fo, 0.0) d0."} (16) 

Performing the integration over f', we obtain 

dgp(f, 0.1 fo, 0.0) 

dA 

= -5. dS'fd0.' bn(f;) O'(f;)gif, 0.1 f;, 0.') 
s). bA 

. [gi f ;, 0.' 1 fo, no) 

- c(f;) f/(0.', 0.")gif;, n" 1 fo, 0.o)dn"} (17) 

Making use of the well-known reciprocity relation (3), 

gp(f, 0.1 fo, 0.0) = gp(fo, -0.of, -0.) (18) 
and 

f(0., 0.') = f( -0.', -0.); (19) 

this formula is easily shown to be identical to formula 
(3.23) of Devooght.2 

B. Geometrical Imbedding with Surface Sources 

In many problems, it is interesting to compute the 
variation of the surface Green's function. The source 
h is then a function of the parameter A. We have 

,g.(f, 0.1 ros;'+d)." 0.0, A + dA) 

= -R(O, B(A + dA»/iA + dA) 

= - R(O, B(A + dA»16(A) - R(O, B(A» 016(A) dA, (20) 
OA 

neglecting terms of the second order in dA; finally, 

bgif, 0.1 f08' 0.0, A) = -bR(O, B(A» I. (A) 
bA bA 6 

_ R(O, B(A» O~~A), (21) 

where the point f08 follows the boundary in its dis­
placement. The derivative of the source will contain 
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the derivative of a Dirac function, which in turn will 
produce a derivative of the Green's function with 
respect to fo., evaluated at the boundary. This can be 
evaluated with the use of the reciprocity principle 
and the Boltzmann equation. There is some ambiguity 
in this evaluation as the derivative of the Green's 
function is discontinuous at the boundary. It is clear, 
however, from Eq. (20) that we have to evaluate the 
variation of the Green's function when the source 
point is moved from outside the medium towards the 
surface, and so we have to use the Boltzmann equation 
with the values of c(f;) and a(f;), that is, zerO. 

To remember this, we will write Eq. (21) as 

~g.(f, D I f o .. Do; A) = -M(O, B(A» i.(A) 
bA bA ~ 

- R(O, B(A» a/~(A) I . (22) 
aA l=l+ 

We sometimes want our observation point to 
follow the surface when A goes to A + dA. The general 
equation for this case can be written easily if we 
consider g.(f, D I fo .. Do; A) for fixed fo .. Do and 
arbitrary f, D as a vector in the vector space of fluxes. 
To obtain the Green's function at a specific point of 
space, we have to apply to this vector a functional 

10* which will transform our vector g.(f, D I fo., Do; A) 
into a scalar g.(fl' Dl I fo., Do; A), where fl and Dl 
are fixed. If the observation points follow the surface 
when .:!. goes to A + dA, the functional 10* will be 
dependent on A. We have 

g.(flSHdl'. Dl I fOSHdl'. Do; A + dA) 
= -1:(,1. + dA)R(O, B(A + dA»/,,(A + dA) 

= -1:(,1. + dA)[ R(O, B(A»/~(A) + ~R(O~:(A» 16(,1.) dA 

+ R(O, B(A» aliA) IdA]. (23) 
aA l=l+ 

Again the computation of the variation of the 
functional involves derivatives of Dirac functions, 
which in turn leads us to evaluate the derivative of the 
Green's function at the surface. This time, again, it is 
clear from Eq. (23) that it is the derivative of the 
Green's function outside the medium which is needed, 
so that our formula becomes 

bg(fls' Dli fo .. Do; A) 
~A 

= -a~l(.:!.) L;.+R(O, B(A»16(A) 

- I:(.:!.) aR(O~:(A» Ii.:!.) 

- I:(A)R(O, B(A» b/~~A) Il=l+' (24) 

Equation (24) is the general form of the invariant 
imbedding equation for the reflection. By specializing 
it to a particular problem, we can derive the equations 
established by Devooght in Sec. 3C of Ref. 2. 

4. APPLICATION TO QUANTUM SCATTERING 
THEORY 

The system is governed by the Hamiltonian Hand 
R(E + i€) is the complete Green's function G+. We 
separate the Hamiltonian into a free-wave term and an 
interaction term. If we assume that rearrangement 
can take place, we can do that in several ways, 

H = Ha + H~ = Hb + H~. 
We can then define the operators 

and 

Tba(E) = H~ + H~G+(E)H~ = Tba + H~ - H~. (26) 

The matrix elements TplZ between eigenfunctions of the 
free Hamiltonian Ha and Hb , taken at the same total 
energy of the system, give the reaction amplitude. 
Taking A as a parameter of the Hamiltonian, we then 
have 

aTba(E) aH~ oH~ +( , a;:- = aT + aT G E)Ha 

+ H' aG+(E) H' + H'G+(E) aH~ . 
b 0,1. a b 0,1. 

Using 

and the definition of Toa ' we obtain 

OTba 
0,1. 

oH' aH = _b H,-IT, + H' G+(E) - G+(E)H' 
OA b ba b A;. a 

+ H'G+(E) aH~ 
b 0,1. 

aH' oH = _b H,-IT, + H'G+(E)H'H,-I_H,-IH'G+(E)H' 0,1. b ba b a a 0,1. b b a 

+ H'G+(E)H'H,-I oH~ 
b a a 0,1. 

= oH~ H,-IT, (E) _ aH H,-IH'G+(E)H' 
0,1. b ba 0,1. b b a 

+ 1', H,-I oH H,-IH'G+(E)H' 
os a 0,1. boa 

_ oH~ + T, H,-l oH~ 
oJ. ba a oJ. 
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_ T. H,-I oH _ oH~ + T, H,-I oH~ 
ba a all. all. ba a all.' 

and finally, 

oTbiE) = T. H,-I oH H,-IT. + aHa 
all. ba a all. b ba all. 

_.OHb H,-IT, (E) _ T. H,-I OHb (27) all. b ba ba a all.· 

If II. is a parameter of the interaction only, i.e., if 

aHa = OHb = 0 
all. all. ' 

OTba(E) = T. (E)H,-I oH H,-IT. (E) all. ba a all. b ba , 
(28) 

.vhich is a generalization of formula (7.76) of Ref. 6. 
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A for~alism is I?resented in order to impo~e causality conditions for finite-range interactions which do 
not req~lre .the eXistence of w~ve packets w~th a sh~rp front. The absence of bound states and particle 
product~on IS ~ssumed. Two. different causality cOl"';dlt!ons-referred to as strong and weak conditions-­
are stl;ldled. It IS shown that III general the convolutIOn kernel that connects the ingoing with the outgoing 
wave IS not zero in the past. Some analytic properties of the S matrix are deduced. 

INTRODUCTION 

THE purpose of this paper is the study of some 
analytic properties imposed by causality on the 

scattering matrix Stew) of two elementary particles 
when the interaction has finite range. A formalism is 
proposed which avoids the main difficulty of the 
problem: The nonexistence of wave packets with 
sharp front when the mass is different from zero. Our 
conclusions are independent of the mass value. 

The first causality condition was proposed in 1927 
by Kramers and Kronigi in the form of a dispersion 
integral (the Kramers-Kronig relation). They proved 
that this relation is a necessary and sufficient condition 
in order that light velocity in a medium is bounded by 
c. Schiitzer and Tiomn02 formulated a causality 
condition for the nonrelativistic s-wave scattering. 
Although the paper contained a correct analysis, the 

* Present address: Junta de Energia Nuclear, Madrid 3, Spain. 
1 H. A. Kramers, Collected Scientific Papers (Amsterdam, 1956); 

R. Kronig, J. Opt. Soc. Am. 12, 547 (1927). 
2 W. Schiitzer and J. Tiomno, Phys. Rev. 83, 249 '(1951). 

condition was formulated in an incorrect way as was 
pointed out by Van Kampen.3 They corrected the 
formulation in Ref. 4. Giambiagi and Saavedra5 gave 
a mathematical improvement of the Schiitzer-Tiomno 
condition by means of a convolution kernel. They 
stated that this kernel H(r) should be zero for T < o. 
In this paper we prove that this condition is valid only 
for s waves. In higher partial waves it is too strong. 

To1l6 studied the logical equivalence between 
causality and the Kramers-Kronig relation in the 
frame of a formalism which can be applied to the 
scattering of zero-mass particles. This case was also 
treated by Van Kampen7 who has also formulated a 
condition for the case of nonrelativistic particles in s 
waves. Van Kampen and Toll found in this way 

3 N. G. Van Kampen, Phys. Rev. 91, 1267 (1953); Physica 20, 
115 (1954). 

• W. Schutzer and J. Tiomno, Symposium on New Research 
Techniques in Physics, Rio de Janeiro (1954). 

• J. J. Giambiagi and 1. Saavedra, Nuc\. Phys. 46, 431 (1963). 
8 J. S. Toll, Phys. Rev. 104, 1760 (1956). 
7 N. G. Van Kampen, Phys. Rev. 89,1072 (1953). 
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_ T. H,-I oH _ oH~ + T, H,-I oH~ 
ba a all. all. ba a all.' 

and finally, 

oTbiE) = T. H,-I oH H,-IT. + aHa 
all. ba a all. b ba all. 

_.OHb H,-IT, (E) _ T. H,-I OHb (27) all. b ba ba a all.· 

If II. is a parameter of the interaction only, i.e., if 

aHa = OHb = 0 
all. all. ' 

OTba(E) = T. (E)H,-I oH H,-IT. (E) all. ba a all. b ba , 
(28) 

.vhich is a generalization of formula (7.76) of Ref. 6. 
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A for~alism is I?resented in order to impo~e causality conditions for finite-range interactions which do 
not req~lre .the eXistence of w~ve packets w~th a sh~rp front. The absence of bound states and particle 
product~on IS ~ssumed. Two. different causality cOl"';dlt!ons-referred to as strong and weak conditions-­
are stl;ldled. It IS shown that III general the convolutIOn kernel that connects the ingoing with the outgoing 
wave IS not zero in the past. Some analytic properties of the S matrix are deduced. 

INTRODUCTION 

THE purpose of this paper is the study of some 
analytic properties imposed by causality on the 

scattering matrix Stew) of two elementary particles 
when the interaction has finite range. A formalism is 
proposed which avoids the main difficulty of the 
problem: The nonexistence of wave packets with 
sharp front when the mass is different from zero. Our 
conclusions are independent of the mass value. 

The first causality condition was proposed in 1927 
by Kramers and Kronigi in the form of a dispersion 
integral (the Kramers-Kronig relation). They proved 
that this relation is a necessary and sufficient condition 
in order that light velocity in a medium is bounded by 
c. Schiitzer and Tiomn02 formulated a causality 
condition for the nonrelativistic s-wave scattering. 
Although the paper contained a correct analysis, the 

* Present address: Junta de Energia Nuclear, Madrid 3, Spain. 
1 H. A. Kramers, Collected Scientific Papers (Amsterdam, 1956); 

R. Kronig, J. Opt. Soc. Am. 12, 547 (1927). 
2 W. Schiitzer and J. Tiomno, Phys. Rev. 83, 249 '(1951). 

condition was formulated in an incorrect way as was 
pointed out by Van Kampen.3 They corrected the 
formulation in Ref. 4. Giambiagi and Saavedra5 gave 
a mathematical improvement of the Schiitzer-Tiomno 
condition by means of a convolution kernel. They 
stated that this kernel H(r) should be zero for T < o. 
In this paper we prove that this condition is valid only 
for s waves. In higher partial waves it is too strong. 

To1l6 studied the logical equivalence between 
causality and the Kramers-Kronig relation in the 
frame of a formalism which can be applied to the 
scattering of zero-mass particles. This case was also 
treated by Van Kampen7 who has also formulated a 
condition for the case of nonrelativistic particles in s 
waves. Van Kampen and Toll found in this way 

3 N. G. Van Kampen, Phys. Rev. 91, 1267 (1953); Physica 20, 
115 (1954). 

• W. Schutzer and J. Tiomno, Symposium on New Research 
Techniques in Physics, Rio de Janeiro (1954). 

• J. J. Giambiagi and 1. Saavedra, Nuc\. Phys. 46, 431 (1963). 
8 J. S. Toll, Phys. Rev. 104, 1760 (1956). 
7 N. G. Van Kampen, Phys. Rev. 89,1072 (1953). 
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analytic expressions for the S matrix which are 
generalizations of the Hu8 expression. Another 
important reference is Hilgevoord.9 

The main problem is the nonexistence of sharp 
fronts if the mass is not zero. As a consequence 
the cause (ingoing wave) and the effect (outgoing 
waye) extend in time from - 00 to + 00. Therefore we 
cannot formulate "the effect is posterior to the cause" 
in an straightforward manner. However we see that 
it is possible to express the outgoing wave as a 
convolution product of the ingoing wave with a kernel 
which plays the role of time-delay function. The 
causality condition will then be imposed on this 
kernel. We will study two different causality con­
ditions referred to as "strong" and "weak" caus­
ality. 

In Sec. 1 we give the definition of Hardy spaces and 
the factorization theorem. The reader is referred to 
the book by Hoffman.1o 

In Sec. 2 we discuss the theory of passive linear 
systems defined as operators in a Hilbert space. An 
elementary approach is to be found in Robinson.H 

Section 3 deals with the scattering of two particles 
in the frame of a formalism quite analogous to that 
of linear systems. The only hypothesis is that the 
interaction has finite range R. The ingoing and out­
going waves are considered as the input and the 
output of a linear system. From causality we obtain 
the analytic properties of S matrix in the complex­
energy plane. 

1. FACTORIZATION OF THE FUNCTIONS 
OF HARDY SPACES 

Let us consider the complex variable w. HP is the 
space of functions which are analytic in the upper 
half-plane and such that -

where M is a constant. H OO is the set of functions 
analytic and uniformly bounded in the upper half­
plane. HP (1 ~ P ~ 00) are Banach spaces.10 Their 
elements have limits almost everywhere in the real axis 
which belong to LP and L 00. In this sense there is an 
isomorphy between HP and a subspace of L P of the 
real axis. We can write HP c LP. 

8 N. Hu, Phys. Rev. 74, 131 (1948). 
9 J. Hilgevoord, Dispersion Relations and Causal Description 

(North-Holland Publishing Company, Amsterdam, 1960). 
10 K. Hoffman, Banach Spaces of Analytic Functions (Prentice­

Hall, Inc., Englewood Cliffs, New Jersey, 1962). 
11 E. A. Robinson, Random Wavelets and Cybernetic Systems 

(Griffin, London, 1962). 

A. Paley-Wiener Theorem12 

IE H2 if and only if it has the form 

J(w) = l)(t)eiwt dw 

for some 1 in £2(0, + (0). This theorem means that 
H2 and £2(0, + (0) are Fourier-transformed spaces. 

B. Factorization Theorem10 

If IE HP (1 ~ P ~ (0), it admits the factorization 

I(w) = Fexp (iocw)BS, (1) 

where F, called "the outer factor," is 

F = exp.! [(+ooIOg IJ(t)1 .tw + 1 ~] 
'T1" )-00 let - w) 1 + t 

(2) 

with the condition 

(+oolog IF(t)1 ~ > - 00. (2') 
)-00 1 + t 

oc ~ 0, B is called Blaschke product and is 

B( w) = IT w - P; 
n~l W - Pn 

with 

~ Impn 
1m Pn ~ 0; £., 2 < 00. 

n~l 1 + IPnl 
S is called a singular function and is 

Sew) = exp [-f.tw + 1 d!-t(t)] , 
let - w) 

where!-t is a positive, finite, singular measure. 

(3) 

(3') 

(4) 

F and S have no zeros in the upper half-plane so 
that all the zeros of I are the Pn. This factorization is 
unique up to a phase factor. 

2. PASSIVE LINEAR SYSTEMS-STRONG 
AND WEAK CAUSALITY 

In this section we give a short account of the theory 
of passive linear systems. The usual form of causality 
tunis out to be too strong to be applied to scattering 
systems. Instead of it we will employ a weaker form. 

There are several works in which linear system theory 
is used in order to impose causality conditions (Refs. 
13 to 17). 

12 R. Paley and N. Wiener, Amer. Math. Soc. Colloq. Pub. XIX, 
New York (1934). 

13 D. C. Youla, L. J. Castriota, and H. J. Carlin, IRE Trans. 
CT-6, 102 (1959). 

14 C. L. Dolph, Ann. Acad. Sci. Fenn. AI, 336 (1963). 
15 A. Zemanian, Distribution Theory and Transform Analysis 

(McGraw-Hili Book Company, Inc., New York, 1965). 
16 W. Guttinger, Fortschr. Physik 14,483 (1966). 
17 E. J. Beltrami and M. R. Wohlers, Distribution and the Boundary 

Value of Analytic Functions (Academic Press Inc., New York, 1966). 
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From the physical point of view a passive linear 
system (PLS) is a device which transforms an input 
into an output. It is passive if it cannot increase the 
value of a given quadratic form of the input, which 
may have the meaning of an energy (classical signals), 
of a norm (wavefunctions) etc. Mathematically the 
definition is the following: "A passive linear system 
(PLS) is a bounded linear operator in £2 ( - 00, + 00) 
that commutes with translations." T is then a PLS 
if b = Ta and b, a E £2 ( - 00, + 00) and 

b * {)T = T(a * ()T); \lall z ~ K IIbll z , (5) 

where K is a positive constant which can be taken as 
unity without loss of generality. a is the input and 
b the output. 

Theorem 2.1: If T is a PLS, there exists a bounded 
function ~ such that 

B=~A, (6) 

where B and A are the Fourier transforms of band a. 
~ will be called a "transfer function." (See Refs. 
11, 14,7, and 18.) 

Theorem 2.1: If T is a PLS, there exists a rapidly 
decreasing distribution19 (J' such that 

b = (J' * a. (7) 
(J' will be called time-delay distribution and is the 
transfer function of ~. 

Theorem 2.1' is clearly a consequence of Theorem 
2.1. Equation (7) results by Fourier transformation of 
(6). Relations (6) and (7) express the action ofa pair 
of linear operators. The first (A ->- B) will be called 
T wand the second (a ->- b) Tt . The respective spaces 
will be referred to as frequency and time space. 

Corollary: The Hilbert subspace of the function 
whose transfer function is zero on a certain set is 
invariant by a PLS.-We could thus define a passive 
linear subsystem as the restriction of a PLS to any such 
subspace. It is clear that there are infinite PLS's 
having the same restriction to a given subspace. 

We now introduce causality in PLS theory. 

Definition: A causal system T is a PLS such that 

Tt£2(O, + 00) c £2(0, + (0). (8) 

In the frequency space this is written 

(8') 

18 A. F. Railada. Ph.D. thesis, University of Paris (unpublished). 
A very elegant proof was pointed out to me by P. Eymard (private 
communication). 

11 L. Schwartz, Les distributions (Herman & Cie., Paris, 1957). 

In order to understand this definition, recall that 

£2( - 00, + 00) = £2( - 00, 0) EEl £2(0, + 00) 

and the Paley-Wiener theorem. It is clear that if 
a = 0 for t < t1 , then b = 0 for 1 < 11 , 

Theorem 2.2 (Causality Condition): A PLS is a 
causal system if and only if one of the following 
statements hold: 

(a) The support of the time-delay distribution (J'is 
contained in (0, + 00); 

(b) The transfer function ~ is the boundary value 
of a function of H OO of the upper half-plane. 

The proof is straightforward. It turns out that this 
causality condition is too strong to be applied to 
scattering. From now on it will be referred to as 
strong causality. We consider now a weaker form: 

Let H'fv be a Hilbert subspace of H2. 

Definition: A PLS is said to be "causal" in H'fv if 

TwH~ c HZ. (9) 

Let us now choose as H'fv the set of functions of H2 
which vanish on a certain finite set of points in the 
upper half-plane (WI> W2 ,"', WN) such that all w's 
are different. 

Theorem 2.3 (Casuality Condition) in H'fv: A PLS 
is causal in H'fv in and only if one of the following 
statements holds: 

(a) The time-delay distribution (J' has the following 
expression for 1 < 0: 

N 
(J' = ! Aje-iwlt, 

;~1 

the A's being complex numbers. 

(10) 

(b) The transfer function ~ is the boundary value 
of a function analytic and bounded in the upper 
half-plane except perhaps in the points WI'" WN' 

In these points ~ may have simple poles. 

The proof is simple and similar to that of Theorem 
2.2. Condition (b) is easily proved, and by Fourier 
transformation one gets condition (a). 

Some remarks are to be made. 

(1) If all Aj are zero we get the strong condition and 
the PLS is causal in all H2. 

(2) (J' decreases exponentially when t ->- - 00 but an 
arbitrary exponential decrease does not give a system 
causal in H'fv . 

(3) ~ may have simple poles in WI ••• WN but it may 
also be analytic in several w;. If ~ is analytic in W,,' 
then A" = O. 
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The function 

~I(W) = ~(w) IT W - w~ 
belong:; to H oo

• 

i~1 W - Wi 
(11) 

3. CAUSALITY AND SCATTERING 

We will now apply PLS theory to scattering systems. 
The Giambiagi and Saavedra5 condition will be 
shown to be equivalent to strong causality and it will 
be proved that it is only valid in s waves. In fact 
Giambiagi and Saavedra gave their condition for S 
waves so that their paper is correct. If / :F:- 0 however a 
weaker form of causality is required. [I am grateful 
to the referee for pointing out through some counter­
examples that my original causality condition (equiv­
alent to Giambiagi and Saavedra condition in S 
waves) was too restrictive.] 

A scattering system is linear, commutes with time 
translations and does not produce particles. This last 
property is to be related to passivity and we have thus 
a strong suggestion for the consideration of scattering 
as a PLS. This point of view can be developed for any 
value of m. It can also be applied both to nonrelativ­
istic or relativistic particles, the only difference being 
the energy-momentum relation. For the sake of 
simplicity let us take first the case m = O. 

We assume only the following: In the e.m. system, 
the interaction is contained in a sphere of radius R 
outside of which the Klein-Gordon equation holds. 

Consequently we do not make any hypothesis 
about the strength or form of the interaction. 

Case m = 0: Out of the region of interaction we can 
write the ingoing and outgoing partial waves in the 
form 

"Pz,in(r, t) = L+oooo Az(w)hl(kr)e-iwt dwPz(cos 0), 

"Pz,out(r, t) =L+oooo Sz(w)Az(w)hi(kr)e-iwt dwPz(cos 0), 

(12) 

where k = wand hl± are the well-known spherical 
Hankel functions. Ai must have a zero of order 
(/ + 1) at k = 0 to compensate the pole of ht-. If 
A z E £2( - 00, + (0) it is clear that "PZ,in and "Pz,out' 
considered as functions of time are also in £2(-00, 
+ (0) for any r. This follows from the fact 

iSz(w)i ~ 1, (13) 

which states that the outgoing flux, integrated from 
t = - 00 to t = + 00, is not greater than the ingoing 
flux. Applying the Plancherel theorem, we get also 

L:001"Pz'inI
2 

dt ~ L:001"Pi,outI
2 

dt (14) 

for any r. The relation between "PZ,ln and "Pz,out being 
obviously linear and independent of time translations, 
the mapping 

"Pz,in(f, t) -+ "PI,out(r, t) (15) 

is a PLS for any r. Let us call it T(r). Then there 
exists a distribution oy) such that 

"P1,out(r, t) = "PI,inCr, t) * O':r) (16) 

and a transfer function which obviously has the form 

!(r) (w) = Sz(w) hi(kr) . 
I hl(kr) 

(17) 

hi has / zeros in the upper half-plane and hi / zeros 
in the lower one. 

Now suppose we fix r =I R and try to apply the 
strong causality condition to T( R): 

O'jR) = 0 for t < O. (18) 

As we have shown !~R) must then be a function of 
H oo and from (17), we see that SI(W) must be zero at 
the zeros of hl(kR). Otherwise !~R) would have poles. 

There may be found examples in which these zeros 
of SI are absent. For instance the scattering of 
electromagnetic waves by metallic or dielectric 
spheres which can be solved exactly. Therefore strong 
causality is not valid. Let us now try a weaker form. 
If we take A z E H2 in (12), the Fourier transform of 
"PI,in vanishes at the zeros of hl(kR). We can thus 
restrict our causality condition to the Banach sub­
space of H2 formed by the functions which are zero at 
these points. Let us call it Hi. Then our condition 
must be 

(19) 

This is what we called in Sec. 2 causality in Hi. 
Because of Theorem 2.3, we state instead of (18) 

the "weak causality condition" 

I 

O':R) = ! Aje-iw;t for t < 0, (20) 
j~l 

where Wj are the I zeros of hl(kR). The Ai are complex 
numbers. 

On the other hand !~R) must be analytic and 
bounded in the upper half-plane except perhaps at 
the points WI ••• WI' 

From remark 3 after Theorem 2.3 and the properties 
of the zeros of ht- ' it is easy to see that 

Sz(w)e2i1<R (21) 

is a function of H oo of the upper half-plane. 
It should be emphasized that the convolution kernel 

is not in general zero for t < 0 except for s waves. 
This is because ho has no zeros. 
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Case m :F: 0: The ingoing and outgoing waves are 
now (taking only positive frequencies) 

"PI.ln(i', t) = LX) AI(w)h,(kr)e-iwt dwP!(cos 0), (22) 

"PI.out(r, t) = Loo S!(w)A!(w)hiCkr)e-iwt dwP!(cos 0), 

(23) 
with 

w = (k2 + m2)! or w = k2j2m. 

The only difference with the case m = 0 is that now 
the mapping (15) is not defined in L~( - 00, + (0) but 
in the subspace of functions whose Fourier transform 
vanishes in (- 00, +m): 

L~(-oo, +(0) = L~(-oo, m) EB L~(m, +(0), 

L~( - 00, + (0) = J'L~( - 00, m) EB J'L~(m, + (0). 

(24) 

Our scattering system is thus a passive linear 
subsystem as defined in the corollary to Theorem 2.1. 
It is clear that there is in J' L~( - 00, m) an infinite set 
of linear operators which commute with translations 
and are of norm ::;; 1. In other words there are infinite 
PLS which when restricted to w> m have the same 
effect as the physical system. 

We must point out that in order to describe bound 
states we should use unbounded extensions to all V. 
From now on we suppose that there are no bound 
states. 

Theorems 2.1 and 2.1' allows us then to say that 
there is an infinite set of rapidly decreasing distri­
butions19 a(R) such that !,« 

"Pz,out(R, t) = "Pz,in(R, t) * aN!) (25) 

and an infinite set of bounded functions Il~) such 
that 

S!(w)A!(w)hi(kR) = I~~l (w)A!(w)hl(kR), (26) 

where we have not written the factors P/cos 0). 
It is clear that all I~~!/ must be equal in the physical 

region w > m. 
If we want to impose a causality condition on the 

convolution kernel, we find that there is an infinity 
of such kernels. This problem arises also for instance 
in the study of the causal propagation of free Klein­
Gordon waves. If we only consider positive fre­
quencies we have an infinite set of convolution kernels 
that propagate 1Jl+(x). For instance ~ .. = ~+ + A~-, 
A being an arbitrary complex number. The natural 
causality condition refers then to the future cone. 
We know, however, that most of these distributions 
do not have their supports contained in the future 

cone. Nevertheless causality is not violated because 
there exists one which is zero outside the cone and all 
are equivalent to it. This special kernel is ~ = ~+ + 
~ - as is well known. 

We will also impose as causality condition the 
existence of one special kernel. As we have seen the 
strong causality condition is in general too restrictive. 
Because of that we state the weak causality condition. 

A. Weak Causality Condition 

The infinite set of distributions {a:~l} such that 
relation (25) holds contains one, ajRl, such that 

z 
ajRl = I Aje-iWjt for t < 0, (27) 

j~l 

w, being the energies corresponding to the zeros of 
hj(kR) and A, complex numbers. 

As a consequence the Fourier transform of alRl, 
IlRl is analytic and bounded in the upper half-plane 
except in W K if AK :F: O. Then as in the zero-mass case 
S!( w)e2ikR is a function of H OO

• 

This causality condition could be expressed in the 
following way. Among all the PLS which when 
restricted to w > m have the same effect as the 
scattering system, there is one which is causal in Hi. 

A case in which all Aj vanish is the hard core. The S 
matrix is then zero at wj • On the other hand, the 
square well illustrates the case in which all Aj are 
different from zero. Consequently S! is not zero at wj • 

A few comments are necessary about the choice of 
the r value. There is no problem so far as the weak 
condition holds. When we increase the r value, say 
to Rl > R, the points Wj move but we have again a 
weak condition. We obtain then that Sz(w)e2ikRl is a 
function of H oo

• This is a weaker result than the one 
obtained for r = R, therefore it is not interesting. The 
strong condition cannot hold at two different r values 
in contrast to the weak condition. An argument can be 
given to state that it can only hold at r = R. Suppose 
T(R1) with Rl > R. We can consider it as three PLS in 
series: 

Of the three systems, T3 obeys a strong condition, 
T2 may obey it, but Tl does not. In fact Tl is the 
inverse system of a PLS which obeys a "strong 
anticausality condition" (a = 0 for t > 0). Since 
the total kertlel is 

(29) 

one can hope that a is not zero for t < O. Of course 
this is not a proof. 
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B. S-Matrix Factorization 

We have proved that SI(w)e2ikR is a function of H oo
• 

We can thus apply the factorization theorem of 
Sec. I: 

SI(w)e2ikR = eiawSf(w)Sf(w)Sf(w) (30) 

with 0( ~ 0 and 

Sf(w) = exp [1 (+<Xllog ISI(t)e2ikRI .zt + 1) -1 dt 2J, 
7f J-<Xl I t - w + t 

(31) 

k being in (31) the momentum corresponding to an 
energy t. 

• <Xl W - fJ 
S~(w) = II --; 1m fJn ~ 0, (32) 

n=l W - fJn 

S?(w) = exp [if : ~ : d~(t) 1 (33) 

~ has its support contained in the nonphysical 
region. Otherwise Sl would not be defined in some 
points of the physical region. 

The positive constant 0( represents a kind of over-all 
retardation. It is zero for electromagnetic waves and 
for nonrelativistic potential scattering. From the 
point of view of causality, 0( may have any non­
negative value. 

Sf represents the inelasticity and is unity if the 
scattering is elastic. It has a cut running along the 
points of the real axis with ISI(W)1 < 1. In fact from 
the symmetry conditions ISI(w)1 = S I,( -w)l, there 
are two cuts symmetric with respect to the origin. 

The Blaschke product Sf contains zero-pole pairs. 
If they are not far from the real axis they can be 
interpreted as resonances. They can be infinite in 
number. 

The factor Sf(w) does not seem to have a simple 
physical meaning. TollG found an analogous factor 
and interpreted it as the effect of infinitely narrow 
absorption lines. 

However, since the S matrix has to be well defined in 
the physical region, these lines must be in the non­
physical interval (-m, +m) (or in w < 0 for non­
relativistic particles). 

From (30) we conclude that 

<5z(w) = to(w - Rk + <5f(w) 
<Xl r <Xl A 

+ !arctan n + ! n, (34) 
n=l 2(On - w) n=l En - W 

where fJn = On + t;r n; An > 0; ! IAn I < 00, Bn in 
the nonphysical region, 0( ~ 0, and <5f is the contri­
bution of the outer factor. 

If the strong condition holds we would write 
ht(kR)/hl(kR) instead of e2ikR in (30) and t arg 
(h"l(kR)/h1(kR)] instead of (-kR) In (34). We 
should obtain 

s (w) ht(kR) = iawSE(w)SB(W)Sf(w), (35) 
I hl(kR) I I 

0( h/(kR) E 
<5 1(w) = - W + ! arg -+-- + <5 1 

2 hl (kR) 

00 r <Xl A 
+ !arctan n +! n. (36) 

n=l 2(On - w) n=l En - W 

4. CONCLUSIONS 

We have obtained in (30) an analytic expression for 
the S matrix valid in the upper half-plane of the 
energy. If we want to extend it to the lower one we 
must choose the cut arising from the function w = 
w(k) in such a way that the poles fJ! correspond to 
1m k < O. This is always possible. It must be stressed 
that the outer factor can have poles in this lower half­
plane. We have then a analytic function in the energy 
plane except for an essential singularity at infinity, 
poles in the lower half-plane (some of them represent 
resonances), two cuts representing the absorption 
(they come from Sf), some essential singularities in 
the nonphysical region (from Sf) and a kinematical 
cut from the function w = w(k). It should be empha­
sized that this structure is the same for the strong 
condition as for the weak one. 
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It is show~ ~hat, for.a certain I?-0del of ma~y-channel potential scattering, there exists, under rather 
gene~al conditions, a smgle f~nction .froJ? which both the potential matrix V and the corresponding S 
~atnx can be co~structed. This function IS the Fredholm determinant of the Lippmann-Schwinger equa­
tIOn for the physical wavefunction of a system having a potential matrix which is identical with V in the 
interval from the origin out to a distance r, but which vanishes identically beyond this distance. A 
one-channel and a two-channel example are discussed. 

1. INTRODUCTION 

FOR the special case of a many-channel problem, 
Le Couteur1 has shown that when the various 

elements of the S matrix for elastic and inelastic 
scattering are meromorphic functions of the energy, 
there exists a single function from which all elements 
of the S matrix may be obtained in a simple way. 
Newton2a has shown that this function of Le Couteur 
might just as well be chosen to be the Fredholm 
determinant of the Lippmann-Schwinger equation, 
and that it is therefore, with the channel momenta 
considered as independent variables, a regular 
analytic function in the whole upper half of the 
complex plane of each channel momentum under the 
very general conditions that the potential matrix has 
finite first and second absolute moments.2b Further­
more, its zeros give directly the bound states and 
include the resonances. Thus the study of the S matrix 
is reduced, in the above sense, to the study of a single 
function of a single complex variable whose analytic 
properties are rather well understood. This fact is 
sometimes useful, for example, in the construction of 
simple models.3- s Other related work includes the 
demonstration by Blankenbecler4 that the S matrix 
may also be constructed from the Fredholm deter­
minant considered as a function of the energy only by 
taking functional derivatives with respect to the 
Green's function, and the generalization by Newton6 

of the entire procedure of expressing the elements of 
the S matrix in terms of the Fredholm determinant to 

• Address for the 1967-68 academic year: Sterling Chemistry 
Laboratory, Yale University, New Haven, Conn. 06520. 

1 K. J. Le Couteur, Proc. Roy. Soc. (London) A 256, 115 (1960) . 
• a R. G. Newton, J. Math. Phys. 2, 188 (l961). 
.b For the corresponding statement which holds when the energy 

conservation relation between the channel momenta is imposed, see 
Ref. 3; see also Refs. 1,4, and 7. 

3 J. R. Cox, J. Math. Phys. 5, 1065 (1964). 
, R. Blankenbecler, in Strong Interactions and High Energy Physics, 

R. G. Moorehouse, Ed. (Oliver and Boyd, Edinburgh, 1964). 
• M. Kato, Ann. Phys. (N.Y.) 31, 130 (1965). 
8 R. G. Newton, Bull. Am. Phys. Soc. 12,49 (1967). 

the case of "continuous channels," which is intended 
to be a preliminary step toward its generalization to 
problems in which there are three or more particles 
with an associated continuum due to the possibility of 
dissociation of initially bound particles. 

It is our purpose in this paper to show that, at 
least in the case of a finite number of discrete channels, 
a single function exists from which not only the S 
matrix, but also the corresponding potential matrix 
V(r') can be constructed in a straightforward way. 
This function is the Fredholm determinant !(r) of the 
Lippmann-Schwinger equation for the potential 
matrix which is identical with V(r') from the origin 
out to a distance r, but which vanishes identically 
beyond this distance. As r, the point of truncation, 
approaches infinity this function evidently approaches 
!, the Fredholm determinant for V(r') mentioned 
above. 

It should perhaps be pointed out that if! itself is 
known in analytic form for a single partial wave, then 
the bound states and the S matrix and hence, by 
means of the many-channel Marchenko equations,7 
the potential matrix V(r') can in principle be con­
structed. However, just as would be expected from 
an analogy with the single-channel case,s V(r') is not 
in general uniquely determined from the bound states 
and the S matrix; instead, if there are N bound states, 
then an N matrix-parameter family of potential 
matrices is obtained. In contrast, a knowledge of !(r) 
(rather than !) in analytic form determines V(r') 
uniquely. 

In Sec. 2, a function q of the channel wavenumbers 
and r is introduced and then the construction of V 
from a knowledge of q in analytic form is discussed 
(we restrict ourselves for simplicity to s waves and 
sufficiently well-behaved potentials). It is then noted 

, J. R. Cox, Ph.D. thesis, Indiana University (1962). 
8 R. G. Newton, Scattering Theory of Waves and Particles (McGraw­

Hill Book Company, Inc., New York, 1966). 

2327 



                                                                                                                                    

2328 JOSEPH COX 

that q is, apart from a known factor, fer). Section 3 
contains illustrative examples. 

2. CONSTRUCTION OF V(r) 

We start with the n-channeI s-wave radial Schro­
dinger equationS 

'If" + (K2 - V(r»'If = 0, (2.1) 

where V(r) is a real symmetric n x n matrix which 
depends on r only, K is the diagonal matrix of channel 
wavenumbers kl' k2' ... , k" , and 'If is a n X n 
matrix which consists of n column solutions of (2.1), 
the solutions differing by their boundary conditions. 
The k's are connected by the relation 

k2 PI 2 All • 
1 = - (k. + '-li), l = 2, ... , n, (2.2) 

Pi 

where Pi is the reduced mass and }j2d~/2Pi .is the 
threshold energy of the ith channel. 

Let us assume that all elements of V(r) possess 
finite first absolute moments. Then there exists an 
n x n matrix solution </> of (2.1) which vanishes at 
r = 0 and whose derivative with respect to r reduces 
to the unit matrix there8 : 

</> = 0, </>' = 1; r = 0. (2.3) 
Define q by 

q = det (</>' - iK</». (2.4) 

We now show that if the single function q is known 
in analytic form for all positive r, then it determines 
each of the !(n2 + n) distinct elements of VCr). 

Equation (2.4) may be expanded as follows: 

q = (.:....i)"ak1k2 • •• k" 

where 

" + I (-i)n- l ai kIk2 ... k;-lk1+1 ••• k" 
;=1 

" " + 11(-0,,-2 
;=1 k=2 

l<k 

X a;,kk1k2 ' •• Kj - I k1+1 ... kk-IKk+l ... kn 

j<k<r 

X k1+1' .. kk-1kk+l ... kl-1kl+l ... k" 

+ ... + a I ,2 "',n' 

a == det </> 

and al •k • I ••.. denotes the determinant of the matrix 
obtained from </> by differentiating all elements in the 
jth, kth, lth, ... rows with respect to r, but leaving the 
elements in all other rows of </> unchanged. This 
expansion of q consists of 2" terms. Since all elements 

of cp are, according to (2.1) and (2.3), even functions 
of all the k's, so are the a's in each term of the expan­
sion. Hence, if we change the sign of one or more k's 
in q, any particular term in the expansion will either 
remain unchanged or merely change sign. Thus, we 
can readily solve for the a's in terms of the 2n q's 
obtained by choosing all possible combinations of 
plus and minus signs for the n k's. We obtain, for 
example, 

where 

a = b-1in I (-rq(j,), 
P 

a/,k = b-1jn-2k;kk I (- )m(1.k)q(p), 

P 

aj,k.! = b-1jn-3kjkkk,I (_ )m<J,k.nq'p), 
p 

(2.5) 

q(P) is obtained from q by choosing some possible 
combination of plus and minus signs to prefix the 
n k's (the sum is over all 2" possible combinations), 
and m(j, k, ... ) denotes the number of minus signs 
which remain after the signs of k; , kk' ... have been 
excluded from the combination. (In the case of m 
occurring in a above, the minus signs of none of the 
n k's is excluded.) For example, if n = 2, then 

a = (4k1k2)-1[ -q++ + q-+ + q+- - q-], 

a1 = (4ik2)-1 [-q++ - q-+ + q+- + q--], 

a2 = {4ik1)-1[_q++ + q-+ - q+- + r], 
a1•2 = (4)-I[q++ + q-+ + q+- + q-], 

(2.6) 

where the superscripts on the n q's refer to the choice 
of signs to prefix kl and k2' respectively. 

Let us solve 
(2.7) 

for V. If det </> "" 0, then by Cramer's rule, we have 

~I = t5i;k~ + a(i;j")a-\ i,j = 1,2, ... , n, (2.8) 

where a(i;j") denotes the determinant of the matrix 
obtained from </> by replacing the ith row of </> by the 
jth row of </>". Consider first, the diagonal elements of 
V. Using the identity 

n 

a(j;j") = (a,l)' - Ia •• I' j = 1,2, .. " n, 
i*; 

we may write (2.8) as 

VH = k; + [Caj)' - iai./Ja-1 
i*1 
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which in turn may be written, according to (2.5), as 

Vii = k;{~ [t1 (- )m(i,J)kiq(pl - i( - )m(;)qdPl]} 

x (~( - )mq(pT
1

, (2.9) 

where m(j, j) == m. 
For the off-diagonal elements of V, (2.8) yields 

Vii = a(i;j")a-l, i ¥= j. (2.10) 

Since V is symmetric, 

a(i;j") = a(j; i"). 

In addition, 

a(i;j') = aU; i'), 
and 

(. ") 0") ak I;] = ak ; I , k ¥= i,j, 

(2.11) 

(2.12) 

where in accordance with the notations established 
above, ak(i;j') denotes the determinant of the matrix 
obtained from 4> by replacing the ith and kth rows of 
4> by the jth and the kth rows of 4>', respectively. 
Equation (2.11) can be established as follows. From 
Eq. (2.7) and V = P, where "-,, denotes matrix 
transpose, we have 

(1'>4>' - 1'>'4>)' = 0 

which, together with (2.3); implies that 1'>4>' is sym­
metric: 

~_n 1 4>k,P 4>k,q I = 0, ~ p, q = 1,2, ... ,n. (2.13) 
k-1 4>kP 4>kq 

Define Ai; by 
n 

Ai; = !a(;,"i; k, k'), i ¥= j, (2.14) 
k=1 

where a(i,j; k, k') is the determinant of the matrix 
obtained from 4> by replacing the ith and jth rows of 4> 
by the kth row of 4> and the kth row of 4>', respectively. 

Next, make a Laplace expansion of a(i,j; k, k') 
according to its ith and jth rows. Then 

n n l4>kP 4>kql . 
a(i,j; k, k') =!! , , M;!a, (2.15) 

p=1 q=2 ifJkP 4>kq p<q 

where M!~ is (- )i+J+p+q times the determinant of the 
matrix which remains after the ith and jth rows and 
the pth and qth columns have been suppressed. 
Substitution of (2.15) into (2.14) and subsequent 
comparison with (2.13) yields, after a change in order 
of summation, 

At; = 0, i ¥= j. (2.16) 

However, a(i,j; k, k') = 0 if k ¥= i,j, because then 

the kth row of 4> appears twice. Equations (2.14) and 
(2.16) therefore imply (2.11). Equation (2.12) can be 
established in a similar fashion. Instead of (2.14), 
one must start with 

n 

Ai;k =! ak(i,j; 1, 1'), i ¥= j ¥= k, 
!=1 

and one then concludes that AUk = 0, i ¥= j ¥= k. In 
parallel with the above case, ak(i,j; I, l') = 0 if 
k ¥= i,j, because then either the Ith row of 4> appears 
twice (k ¥= I) or the Ith row of 4>' appears twice 
(k = I). 

Next we note that for n = 2, there exists the 
identity 

1 
4>~1 4>~211 4>11 4>121_1 4>~1 4>~211 4>11 4>121 
4>21 4>22 4>~1 4>~2 4>~1 4>~2 4>21 4>22 

=14>11 4>12114>~1 4>~21 
4>~1 4>~2 4>21 4>22 

which, by making the appropriate extensionals,9leads 
to the following two identities for n arbitrary: 

aia; - ai,sa = a(j; i')a(i;j'), i ¥= j, (2.17) 
and 

ak.iak,i - ak,i,;ak = ak(j; i')ak(i;j'), i ¥= j ¥= k. 

(2.18) 
Equations (2.11) and (2.17) imply 

a(i;j') = (aia; - aua)!. (2.19) 

Similarly, (2.12) and (2.18) imply 

a,.{i;j') = (ak,iak,; - ak,t,;ak)!. (2,20) 

With the aid of Eqs. (2.19) and (2.20), and the 
identity 

n 

a(i;j") = a'(i;j') - ! ak(i;j'), i ¥= j, 
k*S 

Eq, (2.10) may be written in the form 

V;i = {[(atai - ai,sa)!)' 

- i (ak,iak,i - ak'i'iak)!}a-\ i ¥= j. (2.21) 
k*i 

Finally, Eqs. (2.5) and (2.21) yield 

V;i = (- )n{[ t~.( -)m+m'Ni~p')J' 
+ i i kk(!( - )m(kl+m'(klNfr)!} 

k*J p,p' 
X (~( - )fflq(pT

1

, i ¥= j, (2.22) 

• A. C. Aitken, Determinants and Matrices (Oliver and Boyd, 
Edinburgh, 1956), 9th ed., p. 103. 
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where 

NT:' = 4kik j
[qii+(1J')qii(1J) - qii-(1J')q!1(1J)], (2.23) 

and where the subscripts i and j on the q's mean that 
in any summation over p, the signs which prefix k i 

and k j are to be held fixed at the values indicated 
directly above i and j, respectively, by superscripts. 
For example, if n = 3, then the possible values of 
qlt(1J) are q-++ and q-+-. The question as to which 
roots to take in the square roots in (2.22) naturally 
arises. Ifthe q's are known, then presumably only one 
choice of roots will yield Vi/s which are independent 
of the k's, and this will be the correct choice. 

Writing V out explicitly according to Eqs. (2.9), 
(2.22), and (2.23), we have for n = 1, 

VCr) = k[k + i(q+ + q-),(q- - q+)-l], (2.24) 

and for n = 2, 

Vu(r) = k1{k1 + [i(q+- + q-- - q++ - q-+)' 

+ k 2(q++ + q+- + q-+ + q--)] d-l}, 

V22(r) = k2{k2 + [i(q-+ + q-- - q++ - q+-)' (2.25) 

+ k1(q++ + q+- + q-+ + q-)] d-l}, 

V12(r) = Vu(r) = 2{[k1k 2(q++q- - q+-q-+)]t}' d-\ 

where 
d = q++ + q- - q-+ - q+-. (2.26) 

The function q, as defined by (2.4), is related to 
f(r) , the Fredholm determinant associated with the 
"truncated" potential matrix Vt(r'), where 

, (v(r')' r' < r; 
Vt(r) = 

0, r' > r, 

(2.27) 
where 

(2.28) 

Thus, Eq. (2.27) may be used in (2.9), (2.22), and 
(2.23) to express all elements of V in terms of f(r). 
No particular simplification results when this is 
done for the off-diagonal elements of V. However, for 
the diagonal elements we find 

VJj = -ikj{~ (- )m(i)[if'](1J)){~ (-)m[Ef](1Jf 1
. 

(2.29) 

Equations (2.24) and (2.25), when written in terms of 

10 J. R. Cox, Nuovo Cimento 37, 482 (1965). 

J<1J)(r), become, respectively, 

VCr) = ik(e-ikj'+(r) + eikrf'-(r» 

X (eikj-(r) - e-ikj+(r»-l (2.30) 

and 

Vu(r) = ik1[ei(k1H')j'--(r) + ei(k.-k1)j'+-(r) 

_ e-i(k1H')j'++(r) _ ei(k1-k.)rf'-+(r)]D-t, 

V
2
lr) = ik2[ei(kl~k.)rf'-+(r) + ei(k1H')j'-(r) 

- ei(k.-k1)j'+-(r) _ e-i<k1H')j'++(r)]D-l, (2.31) 

V12(r) = V21(r) 

= 2{[k1k2(f++(r)r-(r) - r-(r)j-+(r))]tr D-l, 

where 

D = ei(k1H.)rj--(r) _ ei(k.-k,)rj+-(r) 

+ e-i(k1H')j++(r) _ ei(k1-k')j-+(r). (2.32) 

The Fredholm determinant f associated with VCr') 
is related to f(r) bylO 

j = limj(r), (2.33) 
r--+ 00 

and f in turn is related to the elements Sii of the 
S matrix by2.8 

Sii = f/-1
; Sii = SiiSii - /;'J-\ i ¥= j, (2.34) 

where, iff = f(k1 , k2' ... , k n), then 

f ==f(k1,··· , -ki"" ,kn) 

and 
fii == j(kl' ... , -ki' -ki' ... ,kn)· 

Consequently, a knowledge of f(r) in analytic form for 
all r not only determines V via (2.22), (2.23), (2.27), 
and (2.29), but also the corresponding S matrix via 
(2.33) and (2.34). Again writing out the n = 1 and 
n = 2 cases explicitly, we have 

(2.35) 
r--+ 00 

r--+ 00 r--+ 00 

and 

S12 = S21 

= lim [(f++(r)r-(r) - r-(r)j-+(r»tlj++(r)], 
r--+ 00 

n = 2. (2.36) 

Thus far we have been assuming thatf(r) (or q) is 
known in analytic form for all r. It is then possible to 
change the sign of one or more k's infer) [orl'(r)] 
and so obtainJ<1J)(r) (or I'(P)(r» as is needed, for ex­
ample, in (2.30)-(2.32). Actually, because of the energy 
conservation relation (2.2), if we consider fer) as a 
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function of kl' then we are led to associate with f(r) 
a kl Riemann surface consisting of 2n half planes, 
each distinguished from the others by its particular 
combination of signs of the imaginary parts of all the 
n k's, and having branch points at kl = ±~2' ... , 
±~" which for positive (upper) sign correspond to 
the threshold energies of the second through nth 
channel, respectively.8 Ifit is assumed that all elements 
of V possess finite first absolute moments, then cp as 
defined by (2.3) and (2.7) is an analytic function of kl 
regular on the entire kl Riemann surface.8 Conse­
quently, according to Eqs. (2.4) and (2.27), f(r) has 
similar properties. Hence, the changing of signs of 
one or more k's in fer) is equivalent to making an 
analytic continuation along the appropriate path on 
its kl Riemann surface.1.4·7 For example, if n = 2, 
then the analytic continuation of f++(r), r held fixed, 
along a path which circumscribes the threshold 
branch point kl = ~2' yields f-+(r). Similarly, other 
paths yieldf-(r) andJ+-(r). 

3. EXAMPLES 

computing VCr), it is useful to note that, as Ikll- 00 

with 1m K > 0, the leading terms in (3.1)-(3.3) are 

f+(r) - 1, f-(r) - V(r)(4k2)-le-2ikr , n = 1, (3.5) 

and, since kl - k2 == k, 

f++(r) - 1, f-(r) ---+ (16k4r 1 

X [Ull(r)U22(r) - V~k)]e-4ikr, 

f-+(r) ---+ -(4k2rlUl1(r)e-2ikr, 

f+- - -(4k2)-lV22(r)e-2ikr, n = 2, 

(3.6) 

where 

and 

VCr) = 2.!!... [R(r) sinh ar], n = 1 or 2, (3.7) 
dr 

VCr) = , n = 2. (
Vn(r) V12(r») 

V12(r) U22(r) 
(3.8) 

Use of Eqs. (3.5) and (3.6) in Eqs. (2.30), (2.31), and 
(2.32) then implies that, for n = 1 or n = 2, 

VCr) = VCr). 

Suppose 
fer) = det F(r), 

The Fredholm determinant associated with VCr) 
(3.1) is, by Eqs. (2.33), (3.1), and (3.2), 

wherell 

x (aK -lsin Kr cosh ar - cos Kr sinh ar) 

+ R(r)K-1 sin Kr sinh ar}, (3.2) 

R(r) = -a-1(sinh ar)C[1 + (4a3)-1 

x (sinh 2ar - 2ar)C]-l a-t, (3.3) 

C is a constant n X n real symmetric matrix, and oc is a 
diagonal n X n matrix such that 

aii = aAi' oc~ = a; - ~;, i,j = 1,···, n. (3.4) 

Equations (2.30)-(2.32) must hold for all energies. In 

11 J. R. Cox, Ann. Phys. (N.Y.) 39, 235 (1966). 

f = (K - ia)(K + ia)-1, 

and consequently, the S matrix for n = 1 or 2 is, by 
Eqs. (2.35) and (2.36), 

S = [(K + ia)(K - ia)-1]2. 

In conclusion, it should be emphasized that al­
though a single function fer )underlies the discrete many­
channel problem in the sense which we have just 
described, the necessary and sufficient conditions 
which such an f(r) must satisfy have not been given. 
Thus, a consideration of f(r) should mainly be of use 
in the study of the relationships between and the 
structure of the various elements of the potential 
matrix and the S matrix. 
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The partition function for the square lattice completelr filled. wit~ dime~ i.s analyzed for a. ~ite 
n x m rectangular lattice with edges and for the correspondmg lattice wIth penodlc boundary condItIOns. 
The total free energy is calculated asymptotically for fixed e = n/m ~p to terms o(l/nl-~) for a.ny 
o > O. The bulk terms proportional to nm, the surface term~ proportIOnal !O (n + m) whIch vamsh 
with periodic boundary conditions, and the constant terms whtch .reveal a parity and shape dependence 
are expressed explicitly using dilogarithms and elliptic theta functIons. 

1. INTRODUCTION 

I N the evaluation of the ~ree energy of a.lattice w~i~h 
is partially filled with dtmers, one conSIders Nd rIgId 

dimers, i.e., figures consisting of two linked vertices, 
each of which fills two nearest-neighbor sites of the 
lattice of N sites, while the remaining N - 2Nd sites 
are regarded as occupied by monomers or holes. Such 
a model is of general interest in the study of the theory 
transitions and in the discussion of the thermodynamics 
of adsorbed films. Combinational problems of this 
nature are also encountered in the study of the cell 
theory of the liquid state, where one divides the 
volume of the liquid into a set of cells, the centers of 
which form a regular lattice. To evaluate the free 
energy, one then considers the number of ways of 
dividing a given volume into a given number of 
double, triple cells, etc. For these reasons, many 
authorsl - 4 have studied the problem using truncated 
series expressions and other approximate methods. 

The problem of evaluating the partition function of 
a plane square lattice completely filled with dimers was 
solved analytically by Kasteleyn,5 Fisher,6 and Tem­
perley and Fisher.' They considered an m x n lattice 
filled with horizontal and vertical dimers of activities x 
and y, respectively, and evaluated the limiting bulk 
free energy per lattice site, i.e., 

Fbulk = lim J.... Fm,n' (1.1) 
m,n-+oo mn 

where F""n is the total free energy of the finite 
m x n lattice. FisherS also analyzed the free energy 
Fm,n asymptotically to the extent of deriving the 
"surface or boundary" terms, that is, those propor-

1 J. F. Nagle, Phys. Rev. 152, 190 (1966). 
I R. H. Fowler and G. S. Rushbrooke, Trans. Faraday Soc. 33, 

1272 (l937). 
3 T. S. Chang, Proc. Roy. Soc. (London) A169, 512 (1939). 
, W. J. C. Orr, Trans. Faraday Soc. 40, 306 (1944). 
• P. W. Kasteleyn, Physica 27, 1209 (1961). 
• M. E. Fisher, Phys. Rev. 124, 1664 (1961). 
7 H. N. V. Temperley and M. E. Fisher, Phil. Mag. 6, (1961). 

tional to m + n for a lattice with edges. He gave an 
expression of the form 

Fm•n R:J mnFbu1k + (2m + 2n)Fsurface 

+ D + O(t/n) (1.2) 

and suggested that the third significant term would 
be the constant D. He estimated its value numerically 
in the symmetric case of a lattice in which m = nand 
x=y. 

In this paper we extend this asymptotic analysis of 
the partition function for the quadratic lattice com­
pletely filled with dimers-both when the lattice has 
edges, and when it is a torus, i.e., when periodic 
boundary conditions are imposed. Our primary 
interest is in determining the shape dependence 
(the dependence on nfm) of the partition function 
and hence of the "so called" molecular freedom 
exp [2F m.n/mn J. We show how these functions approach 
their thermodynamic limit as the lattice becomes 
infinite. This work goes beyond that of Fisher, 6 since 
we obtain explicit analytical expressions for the 
constant D in terms of elliptic theta functions, and we 
also consider the torus or periodic case. 

To summarize our results, we define the ratios 

T=X/Y (1.3) 
and 

~ = n/m; ~' = (n + 1)/(m + 1). (1.4) 

For the partition function Z!:.n(x, y) of a lattice with 
edges, we find 

In Z!:,,,(x, y) = mnFbulk + (2m + 2n)Fsurtace 

+ D~(T/~I) + o(1ln~), (1.5) 

while for the corresponding torus partition function 
Z~,,,(x, y) we find that 

Z;:,,,(x, y) = mnFbulk + D~(T/~) + o(1/n2~) (1.6) 

with ~ > O. The explicit values of the constant terms 

2332 
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depend on whether n is even or odd, and are given by 

D::'even(Tf1;') = i In 2 - -lIn (OzOi:la2
) + (1j7T)Az(T) 

+ tin (1 + 1'Z) - Uln {1' + (1 + 1'2)!} 

+ In {1 + (1 + 1'Z)!}], (1.7) 

D!.Odd(1'jn = i In 2 - -lIn (Oa040;.2) + (l/7T)Az(1') 

+ tln(l + 1'2) - Uln {1'+(1 +1'2)!} 

+ In {1 + (1 + 1'2)i)], (1.8) 

D;'even(1'j~) = -tIn 2 + In (O~ + 0: + OD 

- i In (020lJ4)' (1.9) 

D~Odd(1'/~) ::::: i In 2 + tIn (OBOSO,2), (1.10) 

with 

where 

L2(u) = - foudlP 1P-1 1n (1 - IP) (1.12) 

is Euler's dilogarithm. The theta functions in these 
formulas are defined by 

(1.13) 
where 

q = exp (-1'7T/~) for the torus, 
(1.14) 

= exp(-1'7T/~/) for the lattice with edges. 

It is interesting to note that the symmetry (n, m)-+ 
(m, n), when both m and n are even, corresponds 
precisely to a Jacobian imaginary transformation in 
which the modulus q of the elliptic theta functions is 
transformed by In q -+ l/ln q. 

In collaboration with Fisher, the author has made 
a similar study for the two-dimensional Ising model,S 
and this will be published in due course. 

Before commencing our detailed analysis, we state 
the exact results of Kasteleyn5 and Fisher6 on which 
the work is based. The partition function for an 
m X n plane square lattice with edges completely 
filled with dimers is given by the finite product 

!m [in] 

Z:;;,nCx, y) = 2im
[tn] rr rr 

k=1 1=1 

{ 
17T k7T } X 1 for n even} 

X 2 X
2

COS
2_- + y2cos2_- X im 
n + 1 m + 1 y for n odd ' 

(1.15) 

it being assumed that m is even. If, however, the 
lattice is wrapped on a torus, the partition function 
Z~,n(x,y) may be expressed5 as the sum of four 

8 B. Kaufman, Phys. Rev. 76, 1232 (1949). 

products in the form 

Z~,n(x, y) = t(PI + Pz + Pa + P4), (1.16) 
where 

PI = jj U 2[y2 sin2 {(2k : 1)7T} 

t + x2 sin2 {(21 ~ 1)7T}] , (1.17a) 

_ rrtm rrn 2[ 2 . 2 {2k7T} + 2 . Z {(21 - 1)7T}]! PI - Y sm x sm , 
k=1 !=1 m n 

(1.17b) 

P rrtm rrn 2[ 2 • 2 {(2k - 1)7T} + 2 • 2 {217T}]* 3 = Y sm x sm - , 
11:=1 1=1 m n 

(1.17c) 

P4 = - Ii IT 2[l sin2 {2k7T} + x2 sin' {217T}]*, 
11:=1 '=1 m n 

(1.17d) 
where again m is supposed even. Note the minus sign 
in (l.17d). Clearly if both m and n are odd, 

Z:;;,n == Z~,n == O. 

In Secs. 2-5, we present a systematic analysis of 
the toroidal partition function (1.16) for large even 
n, where ~ = njm remains finite. In Sec. 6 we express 
the results in terms of theta functions and discuss its 
symmetry. In Sec. 7, Eq. (1.16) is analyzed for large 
odd values of n. The remainder of the paper is then 
devoted to a similar analysis of (1.15) for the lattice 
with edges. 

2. REDUCTION OF DOUBLE PRODUCTS 

We begin with the analysis of Z~,n(x, y) for m and 
n both even, and discuss the case of odd n afterwards. 
The product P4 is zero for all n. The conversion of 
double products to single products is made possible 
by use of the identities5 

jj2[ u' + sin2 {2~7T}]i == [lui + (1 + u2)t]!m 

- [- lui + (1 + u2)!]tm, (2.1) 

ll2[ u2 + sin2 {(2k : 1)7T}]t == [lui + (1 + u2)!]lm 

+ [- lui + (1 + u2i]tm, (2.2) 
which are valid for even m. 

With the definitions 

l' = xly, 

SiC!) = T sin {(21 - l)7T/n} 

= l' sin {2/7T/n} 

(2.3a) 

(i= 1,2), (2.3b) 

(i = 3), (2.3c) 
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Pi can be written as 

Pi = ylmn IT I{st(l) + (1 + s~(l))t}tm 
1~1 

+ (_1)i+1{ -St(l) + (1 + s~(l)) }iml (2.4) 

for i = 1, 2, 3. The modulus bars in the product 
arise from negative values of u = SiC!) and the 
removal of the modulus bars in Eqs. (2.1) and (2.2). 
Consider the product 

IT = ir {Si(l) + (1 + s;(l))i}im. (2.5) 
i 1=1 

Since SiC!) is antisymmetric about I = in, we can 
express the product in (2.5) as the product of two 
factors over the range 1 ~ I ~ in by combining the 
factor for I with the factor corresponding to I - n. 
In so doing the factor corresponding to I = in for 
i = 3 is squared, but this makes no difference to the 
argument since that factor is unity. Thus 

IT = ir {s;(l) + (1 + s~(l))i}tm 
i Z~1 

By combining the two factors for each value of I, 
we conclude immediately that 

IT = 1. (2.7) 
i 

We can therefore rewrite Eq. (2.4) as 

Fi = ylmnir 11 + (_I)i+l 
z~l 

with i = 1, 2, 3. 

3. DECOMPOSITION OF Pi 

In this section we decompose Pi into two simpler 
products Qi and Ri and evaluate the former. Evidently 

s;(l) + (1 + s~(l» ~ 1 for 1 ~ 1 ~ tn, 

~ 1 for in ~ 1 ~ n. (3.1) 

With the limit [in], these definitions remain valid for 
odd n. 

To simplify notation, define 

Yi(l) = In {s;(T) + (1 + s~(l))i}, (3.5) 

y(q;) = In {7' sin q; + (1 + 7'2 sin2 q;)i}, (3.6) 
and 

~ = n/m. (3.7) 

We will consider only sequences of lattices in which 
~ remains positive and finite as the thermodynamic 
limit n, m .-.. 00 is approached. 

Taylor's theorem with remainder is now used to 
express Y1(l) [= Y2(l)] in terms of Ya(/) [= y(2hrln)]. 
Thus we have 

YI(/) = y(q;z) - (1T/n)y'(q;z) + (l/2!)(1T/n)2y"(q;z) 

- (l/3!)(1T/n)3y fll (q;z) + (lJ4!)(1T/n)4yi"(q;z + ()1T/n) 

(3.8) 
where 0 :s: () ~ 1, so that 

m1T in 0 
In (q1/q3) = - L -

n Z~IOq;1 

X {-y(q;z) + ;! ~ y'(q;z) - ;! (~rY"(q;I)} + O(I/n2), 

(3.9) 

where q;z = 211T/n, and the O(t/n2) term follows from 
the boundedness of yi" throughout the range. In 
order to apply the Euler-Maclaurin theorem for 
summation9 

q 1 ra+q,j 

r~!(a + rb) = ~ Ja I(q;) dq; + !f/(a) + I(a + qb) 

+ (b/12)[f'(a + qb) - rea)] + O(ba), (3.10) 

we add and subtract the term 1= 0 in Eq. (3.9) and 
finally obtain 

In (q1/qa) = ('T1T/U) + O(lln2). (3.11) 

By also introducing an 1 = 0 term in (3.3) we have 

In qa = m l~ In {7' sin 2~1T + [1 + 7'2 sin2 C~1T) r}. 
We therefore rewrite (2.8) in the form 

p. = yimnqR2 
, , t' 

(3.12) 

Applying the Euler-Maclaurin formula afresh gives 
(3.2) 

where qi and Ri are defined as 

[in] 
qi = IT {si(l) + (1 + s~(l))i}m (3.3) 

Z~l 

and 
[in] 

Ri = IT [1 + (_I)i+I{Si(l) + (1 + s;(l))i}-m]. (3.4) 
Z~1 

In qa = - - + - y(q;) dq; + 0(1ln 2
). 7'1T mn 1" 

3~ 21T 0 
(3.13) 

This may be rewritten conveniently by introducing the 
function 

A2(q;) = (2i)-1[L2(iq;) - L2( -iq;)], (3.14) 

9 A. D. Booth, Numerical Methods (Butterworths Scientific 
Publications Ltd., London, 1957), p. 54. 
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where 

L2(u) = - L"d<p <p-11n (1 - <p), 

is Euler's dilogarithm.5 Finally we have 

Inqa= --+-A2(7)+0 -; 77T mn (1 ) 
3~ 7T n 

and 

(3.15) 

(3.16) 

where 
s 

Sl,p = I exp {-mpya(l)} (4.8) 
1=1 

and 

S2,p = exp {-mpysCs + I)} 
it 

x I exp [-mp{Ya(l) - ysCs + 1)}]. (4.9) 
1=8+1 

77T mn (1) Now for (s + 1) ~ [ ~ it, we have Ya(/) ~ Ya(s + 1), 
In q1 = In q2 = - + -A2(7) + 0 -; . (3.17) and so 

6~ 7T n 

For the symmetric case x = y = 7 = 1, this reduces 
to 

In qa = - - + - G + 0 -7T mn (1 ) 
3~ 7T n2 

(3.18) 

and 

In q1 = In q2 =.!!... + mn G + 0(.1), 
6~ 7T n2 

(3.19) 

where G is Catalan's constant, namely 

G = 1-2 - 3-2 + 5-2 - 7-2 + ... = 0.915965 594. 

(3.20) 
4. ANALYSIS OF R. 

The product Ra will now be analyzed. The products 
R1 and R2 may be discussed along quite similar 
lines. Using (3.4), we express Ra in the form 

where 

t 

Ra = IT [1 + exp {-mysCl)}], 
1=1 

t-1 
= 2 IT [1 + exp { - mYsCl)}] , 

1=1 

t = tn. 

(4.1) 

(4.2) 

The function exp {Ya(!)}, which is symmetric about 
I = it, is strictly monotonic increasing for 1 ~ I ~ it, 
and is strictly monotonic decreasing for tt ~ I ~ 
(t - 1). We therefore write 

where 

so that 

Ra = 2X2 

= 2X2{1 + O(e-m )} 

it 

for t even, 

for todd, 

X = IT [1 + exp {-mysCl)}], 
1=1 

'" it 

(4.3) 

(4.4) 

In X = I (_1)p+1p-1 I exp {-mpysCl)}. (4.5) 
1'=1 1=1 

We analyze the sum 
it 

o ~ S2,p ~ (tt - s - 1) exp {-mpYa(s + I)}. 

(4.10) 
To obtain an expression for Sl,p, define 

p, = 77T/~ = T7Tm/n, 
and write 

• 
Sl,p = I exp {-21pp,} 

1=1 

s 

+ I [{exp (-mpysCl) + 21pp,) - 1} 
1=1 

(4.11) . 

x exp (-21pp,)]. (4.12) 

Now expanding Ya(l) about I = 0, one sees that 

o ~ exp {-mpYa(/) + 2lpp,} - 1 ~ APP,Et, 1 , 

(4.13) 
where A is a suitable constant and 

(4.14) 

is less than, say, unity. On substituting (4.13) into 
(4.12) and extending the first sum to infinity, we obtain 

'" o ~ Sl,p - I exp (-21pp,) , 
1=1 

00 s 

~ 2 exp (-21pft) + App,t-2 I ,a exp (-21pp,). 
1=8+1 1=1 

(4.15) 

On removing the maximum value of [a from under the 
sum and extending the range of summation to infinity, 
we find that 

00 

o ~ Sl,p - I exp (-2Ipp,), . 
1=1 

~ {1 - exp (-2pp,)t1 

X {App,Et,s exp (-2pp,) + exp (-2pp,s)}. (4.16) 

Finally, on summing over p to calculate In X in (4.5), 
we have 

Sp = I~ exp {-mPYa(l)} (4.6) Ap,Et,s! (_1)1'+1 exp (-2pp,){1 _ exp (_2pp,)}-1 

by breaking the range of summation into two regions 1'=1 
so that ~ K(p,)Et,.. (4.17) 

(4.7) where K(p,) is a constant depending on p" the series 
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being convergent and therefore bounded, and 
00 

I (_1)V+lp- l exp (-2Pfts){1 - exp (-2Pft)}-1 
p~l 

< {I - exp (-2ft)}-l In {I + exp (-21's)}. (4.18) 

Similarly, from (4.10) the sum over S2,P satisfies the 
inequality 

00 

o < I (-1)P+1p- 1S2,p 

p~l 

:::;; (it - s - 1) In {1 + exp (-myis + I»}. (4.19) 

We now choose set) = t lo with 0 < <5 < 2. Then 
€t •• = sa(t)t-2 vanishes as to- 2 when t, m, set) -- 00. 

With this choice of set), the right-hand side of Eq. 

with 

G' = G' (- _1_) = IT (1 - q2Z). (S.le) 
7T In q Z~l 

We shall also adopt the convenient notation 
()j = ()j(O, q). The product G' is expressible in terms of 
theta functions by virtue of the relations 

and 

With the function q given by 

q = e-Jl = exp (-xm7Tjyn), 

(5.2) 

(5.3) 

(5.4) 

we can write 
(4.18) goes to zero exponentially fast, and that of G'(rj;) = {2qtj«()lJl)4)}-1. 
(4.19) goes to zero as t exp (_t lo). Thus we now have 

(5.5) 

lIn X - Z~J1( _1)V+
1p-

l 
exp (-2Ipft) I From Eqs. (1.16), (3.16), and (3.17), and (4.21)-(4.23), 

we thus obtain the final result that 

:::;; KW/n2- 0
, (4.20) In Z;:.n(x, y) = mn[(1/,7T)Ab) + tIn y] 

so that finally 

Ra = 2 ft {I + eXp(-2IftW{1 + o ()-o)). (4.21) 
where 

Dn,even(rm = -t In 2 + In «()~ + ()~ + ()D 
By performing a similar analysis of Rl and R2 , we 
obtain We note the special value 

Rl = IT {I + exp [-1'(21 - l)W{1 + o(~)} 
1=1 n2 0 

(4.22) 
and 

R2 = IT {1 - exp [-1'(21 - l)W{l + 0C!-o)} 
(4.23) 

with <5 > O. 

5. INTRODUCTION OF THETA FUNCTIONS 

For the theta functions, we adopt the notation of 
Whittaker and Watson,lO where the four theta func­
tions are defined as 

()l(Z, q) = 2G' qt sin Z IT (I - 2q2Z cos 2z + q4Z), 
Z~l 

(5.1a) 

()2(Z, q) = 2G' qt cos Z IT (1 + 2q2Z cos 2z + q4Z), 
l~l 

(5.1b) 
00 

()a(z, q) = G' IT (1 + 2q21-1 cos 2z + q41-2) , (S.lc) 
l~l 

00 

()4(Z, q) = G' IT (1 - 2q21-l cos 2z + q41-2), (5.1d) 
1=1 

10 E. '!". Whitt~ker ~nd G. N. Watson, A Course of Modern Analysis 
(CambrIdge UmversIty Press, Cambridge, England, 1902), 4th ed., 
Chap. 21. 

Dn ,even(l) = In (V2 + 1) = 0.881 373587. 
(5.8) 

We expect symmetry under the interchanges 
X~ y, m~~ n, rj;~ ;jr. To verify this we use 
Jacobi's imaginary transformation,lO namely, 

(r/ ;}!()iO I iTj;) = ()2(0 I i;jr), 
(rj;)i()a(O I iTj;) = ()3(0 I i;jr), 
(rj;)i()2(0 I irj;) = ()4(0 I i;jr), (5.9) 

from which the result 

D~even(rj;) = D~evenmr) (5.10) 

is evident. Similarly one easily sees5 that 

tIny + (lj7T)A2(Xjy) = t In x + (lj7T)A2(yjx), 

(5.11) 

which establishes the symmetry of the complete 
asymptotic partition function. 

Finally, for the symmetric case x = y = r = 1, we 
have 

In Z;:,n(l, 1) = mnGj7T + D~even(~) + o(ljnH
). 

(5.12) 

6. ODD VALUES OF n 

The study of the partition function for odd values of 
n is interesting both mathematically [for the change in 
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the explicit expression for Z~.n(x, y)], and physically 
[because of the numerical changes which indicate the 
long-range correlations between dimers]. 

When n is odd (= 2t + 1), the factorin Eq. (1.17b) 
corresponding to / = t + 1 and k = tm vanishes so 
that P2 = O. Thus, for odd n and even m, the partition 
function reduces to 

Z~,n(X' y) = t(PI + P3). (6.1) 

To analyze Pi in Eq. (2.8), we now write n = 2t + 1 
and split the range of the product from / = 1 to 
2t + 1 into two ranges which can be combined in 
pairs to yield 

Pi = 2qiR~ for i = 1,3. (6.2) 

Since the graph of sin {2hr/(2t + I)} reflects about 
/ = Ht + 1) into sin {(21 - I)1T/(2t + I)}, we have 

PI = Pa • (6.2a) 

Now taking into consideration the asymmetry of 
sin {2hr/(2t + I)} with respect to the two ends of the 
range / = 0 and I = t, the analysis of Sec. 4 yields 

<Xl . 

PI = P3 = 2ql II {I + exp (-21,u)}2 
!~l 

x [1 + exp {-,u(21 - 1)}]2{1 + o(I/nH)}. (6.3) 

The Euler-Maclaurin analysis of Sec. 3 now gives 

so that 

In PI = (mn/1T)A2(T) - 1\,u 

+ In {2 ;fi {I + exp (-21,uW 

x [1 + exp {-,u(2/- 1)}]2} + o(l/nH), 

(6.5) 
or in terms of theta functions, 

In PI = In P3 = (mn/1T)A2(T) + i In 2 
+ tIn «(}l)l),2) + o(1in2-d). (6.6) 

Finally we get the same result (5.6) as before, but 
with Dn,even(T/;) replaced by 

D~Odd(-Tm = i In 2 + tIn «(}2(}3(},2). (6.7) 

We note the special value 

D~odd(l) = tIn 2 = 0.519 860385 5. (6.8) 

To check the symmetry of Eq. (6.6) under n~ m, 
we would have to retrace our steps, but starting with 
the initial assumption that m is odd. 

From Eqs. (5.8), (5.12), and (6.8) we find for m = n, 

where n is large and even, that 

In Z~,nCl, 1) - t[1n Z~,n_l(l, 1) + In Z~.n+1(I, 1)] 

= In (.../"2 + 1) - ! In 2 = 0.361 513 2015. (6.9) 

This indicates that the free energy is always greater 
for n odd than for n even (m being even in both cases). 
This presumably is because some types of configura­
tions which are available for n even do not exist for 
n odd. 

7. DDdERS ON A SQUARE 
LATTICE WITH EDGES 

As in the previous sections, we choose m to be 
even so that n can be either odd or even. Then with 
the aid of the identityS 

fi 4[u2 + cos
2 {~}J 

k~1 m + 1 

_ [u + (1 + u2)!]m+1 - [u - (1 + u2)!]m+1 
(7.1) 

= 2(1 + u2)! 

which holds for even m, the product over k in (1.15) 
can be performed, with the result 

[in] 

Z~.nCx, y) = imn II 
!~1 

[{e(/) + (1 + e2(l))!}m+1_ {e(/) - (1 + e2(l))!}ffl+1] 
x !' 

2(1 + e2(/» 
(7.2) 

where 
e(l) = T cos {11T/(n + I)}. (7.3) 

With the definitions 

[in] 

q4 = II {eel) + (1 + e2(/»!}'''+1, (7.4) 
!~1 

[in] 

qs = II HI + e2(l)}-!, (7.5) 
!~1 

and 
[in] 

Po = II [1 + {eel) + (1 +.e2(l))!}-2(m+l)], (7.6) 
!~l 

the partition function (7.2) can be written in the form 

Z~,n(x, y) = i mnQ4qsPO' (7.7) 

To analyze the product Po, we transform the cosine 
functions in (7.6) to sine functions by setting n =2t 
and writing 

11T/(n + 1) = t1T - t1T(2t - 21 + I)/(n + 1). 

As I assumes the values from t to 1, the term 
(2t - 2/ + 1) assumes odd-integer values, so that 

t 
Po = II [1 + {s(1) + (1 + s2(l))!}-2(m+1)], (7.8) 

!=1 
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where 
s(1) = T sin {(21 - 1)1'12(n + I)}. (7.9) 

On performing an analysis quite similar to that of 
Sec. 4, we readily find that 

In PI) == i In {20:/0a04} - Tl'I24~' + o(lln2
-

U
), (7.10) 

where 
(7.11) 

and 
~' == (n + l)/(m + 1). 

The sum In q4 is analyzed with the aid of the Euler­
Maclaurin's theorem as before. We state the results: 

Inq, == (m + 1)(n + 1)(1/l')A2(T) 

- t(m + 1) In {T + (1 + "a)t} + Tl'l24E' 

+ O(l/n2), (7.12) 
In qs == ! In 2 + lIn (1 + T2) 

- !(n + 1) In {I + (1 + T2)t}. (7.13) 

Substitution of (7.10), (7.12), and (7.13) into (7.7) 
readily yields the final result: 

In Z~.n(x, y) 

= mna In y + (1/1')A2(T)} 

- m[! In {-r + (1 + T2)t} - (l/l')Ajl(T)] 

- n[i In{l + (1 + T2)t} - (1/1')A2(T)] 

+ D!,even(T/~I) + o(l/n2-d), (7.14) 

where 

D!,even( T / ~') 
== ! In 2 + (l/l')AaCT) + lIn (1 + T2) 

- ![In {T + (1 + T2)t} + In {I + (1 + T2)t}j 

+ i In {20:/6204}. (7.15) 

The bulk term proportional to mn is the same as for 
the torus. The surface terms which are proportional 
to m + n were found by Fisher,6 who also obtained 
the first four terms of the expression for D~even(T/~/). 

For the symmetric case x = y = T = 1, Eq. (7.14) 
simplifies to 

In Z~,n(l, 1) 

= (mn/l')G - (m + n){t In ( .• /i + 1) - (l/l')G}l 

+ D~even(1/~I) + o(l/n2-d). (7.16) 

The symmetry of the bulk term has already been 
tested. For the surface terms and the term D~even( TI n 
it is again readily established by means of Jacobi's 
imaginary transformation (5.9) and the relation (5.11) 
satisfied by Euler's dilogarithm. 

We note the special value for the symmetric case 
x = y = T == 1 and ~ = 1: 

D!,even(l) = ! In 2 + (l/l')G - In (.[2 + 1) + E, 

(7.17) 
with 

E = lIn 2 = 0.173 2S6 795, (7.1S) 

which may be compared with Fisher's6 numerical 
estimate for the case m = n which he investigated, 
and whose value he gives as E ~ 0.170. 

8. THE ODD-EVEN EFFECT 

To analyze the product Po for odd values of n = 
2t + 1 we transform the cosines as before by writing 

lnl/(t + 1) = il' - il'(t - 1+ 1)/(t + 1). 

As I goes from t to 1, the term (t - 1 + 1) assumes all_ 
integer values from 1 to t. The analysis of Sec. 4 then 
gives 

In Po = i In { Oi} + ~(~) + o( ~), (S.I) 
040S 12 ~ n 

and the now~familiar analysis of q4 and qs readily 
yields the results 

Inq4 = (m + l)(n + 1)1'-1A2(T) 

- i(m + 1) In {T + (1 + T2)1} - -hl'(T/~/) 

+ O(l/n2) (S.2) 
and 

In qr, = In 2 + t In (1 + T2) 

- i(n + 1) In {I + (1 + T2)t}. (S.3) 

On substituting (8.1), (S.2), and (S.3) into (7.7), one 
finds the same result as for even values of n, except 
that D~even(T/n is replaced by 

D!,Odd(T/~I) 

= ! In 2 + (111')A2(T) + i In {20:/0S04} 

+ tIn (1 + 'T2) - Uln {T + (1 +T2)1} 
+ In {I + (1 + T2)t} J. (8.4) 

It is interesting to note that, for large m and n, 

In Z~.,,(I, 1) - 1{ln Z~.n_l(l, 1) + In Z~.n+l(l, I)} 
= lIn 2 = 0.OS6 643 397 6, (S.5) 

which again illustrates the relatively far-reaching 
effects of the parity of n. 

9. CONCLUSIONS 

The expressions (5.7), (6.7), (7.15). and (S.4) repre­
sent the final results of our analysis of the torus and 
the lattice with edges. It is interesting to note how 
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well these asymptotic expressions work even for the 
smalle~t lattices. For example, the truncated formulas 
(7.16), (7.17), and (8.4) give the number of dimer 
configurations for the plane 2 x 2,2 x 3,3 X 4, and 
4 X 4 lattices with edges as 1.96, 2.98, 11.07, and 
35.71, respectively. To the nearest whole number, 
these are precisely the exact values 2, 3, 11, and 36, 
respectively. However, for the 8 X 8 chessboard, 
the truncated expression gives to the nearest integer 
12957925, compared with the exact value 12988 816 
given by Fisher6 for the number of dimer configura-

tions. Despite this numerical difference, the fractional 
error is only 0.24 %. 
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It is shown how the monomer-dimer problem can be formulated in terms of a transfer matrix, and 
hence in terms of simple spin operators as was originally done for the Ising problem. Thus, we rederive 
the solution to the pure dimer problem without using Pfaffians. The solution is extremely simple once one 
sees how to formulate the transfer matrix. 

1. INTRODUCTION 

SINCE Onsager's solutionl of the two-dimensional 
Ising model in 1944, there has been a great deal of 

activity in the general area of nearest neighbor planar 
lattice problems. Basically, two approaches have been 
used.2 One is the "algebraic" or "transfer matrix" 
method (used by Onsager) which focuses attention on 
the manner in which two neighboring rows are 
connected to each other. The second is the so-called 
"combinatorial method" whereby one studies graphs 
on the lattice as a whole. This was first used by Kac 
and Ward3 for the Ising problem. 

The most recent and concise formulation of the 
combinatorial method reduces the various problems 
to the evaluation of a Pfaffian. This method had its 
first "original" success in the solution to the dimer 
problem by Kasteleyn,4 and for this reason is also 
referred to as the dimer method. 

* Work supported by National Science Foundation Grant 
GP-6851. 

1 L. Onsager, Phys. Rev. 65, 117 (1944). 
a We make no attempt to give a complete bibliography because 

an excellent one is given in H. S. Green and C. A. Hurst, Order­
Disorder Phenomena (lnterscience Publishers, Inc., New York, 1964). 

a M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952). 
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While Pfaffians have been used to rederive the 
solution to the Ising problem,s no one has yet taken 
the complementary step of solving the dimer problem 
by the transfer matrix method. The purpose of this 
note is to eliminate this gap. Elsewhere,6 it has been 
shown how the transfer matrix method for Ising-like 
problems can be reduced to a few simple steps involv­
ing only fermion creation and annihilation operators. 
The dimer problem is likewise simple, using the 
transfer matrix. We also show how the more difficult 
and unsolved monomer-dimer problem can be 
formulated. this way. The analogy with the problem 
of the Ising model in a magnetic field is very trans­
parent, but the monomer-dimer problem is somewhat 
simpler and therefore there is <;:onsiderable hope that 
this new formulation of the problem may ultimately 
lead to its solution. 

2. FORMULATION OF THE TRANSFER 
MATRIX 

We have a square planar lattice of M rows and N 
columns and hence MN vertices. A dimer is a rigid 
rod just long enough to cover two neighboring 

• C. A. Hurst and H. S. Green, J. Chern. Phys. 33, 1059 (1960). 
6 T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 

36,856 (1964). 
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vertices (either horizontally or vertically), while a 
monomer covers just one vertex. An allowed con­
figuration of the lattice is one in which every vertex is 
covered by a monomer or a dimer such that no 
vertex is covered by more than one object. If h, v, and 
m, are, respectively, the numbers of horizontal dimers, 
vertical dimers, and monomers in a configuration 
(with 2h + 2v + m = MN), then the partition func­
tion Z is 

Z - "" (ALLOWED ) X" vzm 
-.k CONFIGURATIONS Y 

-- IMN I (ALLOWED ) IXhf3m 
- Y CONFIGURATIONS 

(2.1) 

where x, y, and z are the appropriate "activities" and 
IX = x/y, f3 = z/(y)!. 

Beginning at the "bottom" of the lattice, we have a 
row of N vertical bonds (V bonds) followed by a row 
of N horizontal bonds (H bonds), and so on alter­
nately. There are M bond rows of each type. On each 
V bond of the first row, we place an arrow (or spin): 
an up arrow (spin +) signifies the presence of a 
vertical dimer on that bond, while a down arrow 
(spin -) signifies the absence of a dimer. The next 
row consists of NH bonds alternating with N vertices. 
If an arrow points into one of these vertices (i.e., 
spin + on the previous V bond) that vertex is saturated 
and only a down arrow must be allowed to propagate 
out of that vertex along the next V bond. If, however, 
a down arrow (spin -) comes into a vertex from 
below, one of three things are allowed to happen: 
(1) an up arrow (= dimer = spin +) can propagate 
along the next V bond; (2) two neighboring down 
arrows can cooperate to form a horizontal dimer on 
the intervening H bond, which means that down 
arrows must propagate upwards from those two 
vertices; (3) a down arrow can propagate upwards 
from the vertex in question, signifying that a monomer 
has been placed on that vertex. 

These rules seem complicated but they can be 
simply formulated if one decomposes the activity on 
the row of vertices into two simple steps. 

Step 1: Reverse all the incoming arrows. The 
operator that accomplishes this is simply 

N 

VI = II a;, (2.2) 
i=1 

where rr is the Pauli spin matrix rr = (~~). The 
operator VI guarantees that an incoming up arrow 
(spin +) will go out as a down arrow, as required. 
Contrariwise, an incoming down arrow (no dimer) 

will propagate upwards as a V dimer (spin +). To 
create monomers or H dimers on the row of H bonds 
under consideration, it is necessary to convert some of 
these up arrows to down arrows and this is accom­
plished by the second step. 

Step 2: To create a monomer at thejth vertex of the 
row, we multiply by t1j, where u- = (~). To create a 
horizontal dimer at the adjacent sites j and j + 1, we 
multiply by OjOj+l' Note that after multiplication by 
these operators, we are insured that only down 
arrows (i.e., no vertical dimers) propagate onto the 
next row of V bonds. 

The operator which generates exactly m monomers 
on the row is (m !)-l(I~1 ot)m because (ot)2 = O. 
Thus, to generate an arbitrary number of monomers 
with the factor pm, we multiply by the operator 

V2 = exp (f3i~ ai) (2.3) 

Likewise, to generate H dimers, we multiply by 

Va = exp (IX 1 O'tO'H-l)' (2.4) 
.=1 

In Eq. (2.4), we have used cyclic boundary conditions 
with ON+! == 0'1. If free ends are desired, then omit 
the term OlON. 

Thus, our transfer matrix is 

V = Va V2 VI> (2.5) 
and 

(2.6) 
where we have used cyclic boundary conditions in the 
vertical direction. We note that free edge (noncyclic) 
boundary conditions can be used in either or both 
directions with no great complication, although we 
shall confine ourselves here to cyclic boundary 
conditions. 

The problem is thus reduced to computing the 
eigenvalues of V. 

3. DIAGONALIZATION OF THE TRANSFER 
MATRIX 

It is convenient, although not essential, to eliminate 
VI' To do so, we consider V2 = VS V2 V1 VaV2 V1 and 
make use of the fact that 0'7 is a unitary operator with 
0'7otO'f = at = (g~). Thus, 

V2 = VaV2 VaV2 (3.1) 
with 

V2 = exp (f3 i~ at) , 

Va = exp (1X.1 at 0'41) . 
.=1 

(3.2) 
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Thus, 
Z = y!MN 2: Aj(N)!M, 

j 

(3.3) 

where A;(N) (for j = 1, 2, ... , 2N) are the eigenvalues 
of V 2 (we have assumed M is even). 

The operator V contains two kinds of operators: 
quadratic forms (as in Va and Va) and linear forms 
(as in V2 and V2). It is similar to, but simpler than, 
the problem of the Ising model in a magnetic field, 
because V2 and Va commute and because V2 is the 
adjoint of V2 and Va is the adjoint of Va. Nevertheless, 
we still are unable to handle the linear forms and 
henceforth we shall set f3 = 0 (i.e., we consider only 
the pure dimer problem). 

The appropriate steps to diagonalize VaVa are 
well known. The details are in Ref. 6 and it suffices 
to outline the steps here. First, we transform from 
paul ions to fermions: 

Cj == (-I)H(fi <1:)<1--;' 
,=1 

cj == (_I)H n <1: <1t, 
,=1 

with <1Z = (~~1)' 
This results in 

(

j-1 ) 

while 
<11<1N = (-I),N'CN C1 , 

<1t<1A, = -( ,....1).N' c1cr, 
where X = If CJCi is the number operator. 

(3.4) 

(3.5) 

(3.6) 

Since (-1).N' commutes with a quadratic form in 
fermions (or paulions), it is a constant of the motion = 
+ 1 for states of even X and -1 for states of odd X. 
The latter case is cyclic while the former is anticyclic. 

Next we go to running waves: 

C j = N-ie-i1f/4 I eiqj'Y}q, (3.7) 
q 

with 
q = ±7TjN, ±37TjN, ... , ±(N - 1)7TjN (3.8a) 

for X even, and 

q = 0, ±27TjN, ±47T/N, ... , ±(N - 2)7T/N,7T 

(3.8b) 

for X odd. (We have assumed that N is even.) In 
terms of these running waves, we have 

V 2 = IT Aq (3.9) 
O:Sq:S .. 

with 

Aq = exp (2ex sin q'Y}q'Y}-q) exp (2ex sin q'Y}~rJ!). (3.10) 

each Aq , but we must remember to use the appro­
priate q values [(3.8a) or (3.8b)] according to whether 
the total X value of a state is even or odd. 

To diagonalize Aq (for q =;!: 0 and q =;!: 71'), we first 
list the four basis states, 

<1>0 = 10), <l>q = 'Y}J I?), t <I>_q = 'Y}~q 10), (3.11) 
<I> _qq = 'Y}-q'Y}q 10). 

The states <I> q and <1>_0 are pure odd states and are 
eigenvectors of Aq with eigenvalue unity. The other 
two states are pure even and 

Aq<l>o = (1 + 4ex2 sin2 q)<I>o + 20( sin q<l> -qq, 
(3.12) 

The two even eigenvalues of Aq are thus 

Aeven = [0( sin q ± (1 + 0(2 sin2 q)!]2. (3.13) 

For q = 0 or 71' there are only two states: <1>0 = 10) 
(even) and <l>q = 'Y}J 10) (odd). Both have eigenvalue 
unity. These values of q are effective only for X odd 
and these pairs of states may be used to insure that 
X is always odd without affecting the total eigenvalue. 

Thus, from (3.3), 

y-!MNZ = 2 IT {[(I + 0(2 sin2 q)! + 0( sin q]M 
O<q<1f 
qe(a.8b) 

+ [(1 + 0(2 sin2 q)! - 0( sin q]M + (1 + I)} 

+ t II {[(I + 0(2 sin2 q)! + 0( sin q]M 
O<q<1f 
qe(a.8a) 

+ [(1 + 0(2 sin2 q)! - ex sin q]M + (1 + I)} 

+ t II {[(I + 0(2 sin2 q)! + 0( sin q]M 
O<Q<1T 
qe(a.8a) 

+ [(1 + 0(2sin2q)! - O(sinq]M - (1 + I)}. 

(3.14) 
The first product in (3.14) gives the contribution of the 
X odd eigenvalues while the sum of the second and 
third products gives the contribution of the X even 
eigenvalues. [Eq. (3.14) agrees exactly with Kasteleyn's 
result (Ref. 4, Eq. (25», as may· be seen using 
Kasteleyn's identity (Ref. 4, Eq. (26».] 

For a large lattice (MN --+ (0), we need consider 
only' the largest eigenvalue of V2, which means the 
product on all q of Eq. (3.13), using the plus sign. In 
this limit, it clearly is immaterial which set we use, 
(3.8a) or (3.8b). Thus, 

lim (M N)-11n Z 
M,N-+OC) 

= l.. C"dq In [0( sin q + (1 + 0(2 sin2 q)!] 
271' Jo 

+ tin y, (3.15) 

Obviously, Aq and Aq, commute with each other. An which agrees with previous results' for the pure dimer 
eigenvalue of V2 is thus the product of eigenvalues of problem. 
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• More. general functional derivatives for vector mesons are introduced. As lih application, a finite 
.heory IS formulated for neutral vector fields based on the "strong" Lorentz condition together with 
the other usual assumptions of asymptotic quantum field theory. 

I. INTRODUCTION 

FUNCTIONAL derivatives have been useful in 
treating the complicated problem of quantum field 

theory.1-4 In particular, functional derivatives with 
respect to fields have played a part in many interesting 
formulations with considerable success. 2- 4 Perhaps 
the most important feature of this functional deriva­
tive is that it enables us to treat on- and off-mass-shell 
properties simultaneously. For the scalar and spinor 
fields, the functional derivatives have been discussed 
in many places.1- 6 For higher-spin fields, because of 
the complexity caused by subsidiary conditions, there 
are some difficulties in defining functional derivatives. 5 

Later, Rohrlich and Wilner6 were able to overcome 
these difficulties for a spin-l field by writing down 
the Proca equation instead of the Klein-Gordon 
equation. 

In this work, we give a more general definition for a 
vector field, treating the Klein-Gordon equation and 
the subsidiary condition independently. The definition 
or Rohrlich and Wilner is a particular case of our 
definition. More interestingly, we can treat the Klein­
Gordon. equation and the subsidiary condition 
separately, such that the former holds only weakly 
while the latter holds strongly.7 This proves to be a 
powerful tool for developing a neutral vector meson 
theory. 

The well-known property of gauge invariance for 
a photon field also exists in a massive neutral vector 
field. This was explored in great detail by Feldman 

,. Supportqd by the National Research Council of Canada. 
1 J. S. Schwinger, Proc. Nat!. Acad. Sci. U.S. 37, 452 (1951); K. 

Symanzik, Z. Naturforsch. 10, 809 (1954); N. N. Bogoliubov and 
D. C. Shirkov, Introduction to the Theory of Quantized Fields 
(Interscience Publishers, Inc., New York, 1959). 

2 R. E. Pugh, Ann. Phys. (N.Y.) 23, 335 (1963); R. E. Pugh, J. 
Math. Phys. 6, 750 (1965); 7, 482 (1966). 

3 T. W. Chen, F. Rohrlich, arid M. Wilner, J. Math. Phys. 7, 
1365 (1966). 

• T. W. Chen, Ann. Phys. (N.Y.) 42, 476 (1967); T. W. Chen, 
Ph.D. thesis, Syracuse University (1966). 

6 F. Rohrlich, J. Math. Phys. 5, 324 (1964). 
8 F. Rohrlich and M. Wilner, J. Math. Phys. 7. 482 (1966). 
7 For the meaning of strong and weak equalities, see the remark 

following (2.3). Also see Refs .. 2 and 4. 

and Matthews. 8 The present formulation, which 
assumes the Lorentz condition on and off mass-shell, 
displays this property in a natural way. 

In the next section, our definition of the functional 
derivative for a vector field is given. The subsidiary 
condition is then discussed in Sec. III. In Secs. IV 
and V, we have formulated a neutral vector field 
theory based on the functional derivatives. Finally, 
a brief discussion is given in Sec. VI. 

II. FUNCTIONAL DERIVATIVES FOR A 
NEUTRAL VECTOR FIELD 

As for scalar or spin or fields, we define formally 
the functional derivatives for a vector field as follows: 
Assuming that the free vector fields all form a com­
plete set so that any operator F can be expanded in 
terms of normal products of the free fields, 7 

F :b L -" (x' .. x)· adl 
••• aan CJ) 1 J 

,,~O n! a1' •• an 1, 'n' 

: d4Xl' •• d 4xn' (2.1) 

where Xi are four-vector coordinates, all. == a"/(Xt) 

andjocl ... ocn(x1 , ••• ,xn) are c-number distributions. 
Then the functional derivative with respect to all (x) , 
in general, can be defined by 

of 00 1 J -;- == L -; rll''faal' .. ",,(x, Xl, ••• , x,,) 
va" n~on. 

: a"l ••• aa" : d4xl ... d4x", (2.2) 

where r"a is an arbitrary second-rank c-number 
tensor which can be written as 

r"a == c1g"" + ciJ"a", 

or, using the more convenient notations d"", ella,1I one 

8 G. Feldman and P. T. Matthews, Phys. Rev. 130, 1633 (1963). 
9 dll" and ell" are defined as follows (see Ref. 8): dill' == gPV -

(pppV!p'), ePV == pPpv/p' in the momentum space. In x space, ePV is 
given by e""Fv(x) == -oPal' J Ds(X - y)Fv(Y) d4y or simply 

dpv == gPV - (0"01'/0), e"" == (0"01'/0). 

Note the relations e""e~ = ePv, d"" d; = dp". eP .. d; = 0 (also 
o"'e"p = op, all d",p = 0). and eP" + dp" = gpv. 

2342 
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can write 
p.la = d/.la + Ae/.la (2.3) 

with an arbitrary parameter A. 
Using the same notation, 4:, as a previous 

work,4 we say that two operators F and G are strongly 
equal 

if and only if 

< ~nF ) < ~nG ) 
~a/.ll ••• ~a/.ln 0 = ~al.ll ••• lJaJl.n 0 

for all n ;;::: 0. We shall see many equalities which hold 
only weakly in that the functional derivatives of each 
side are unequal. This weak equality will be denoted 
by "~". 

Making use of the definition (2.2), we can easily 
relate the coefficient functions fa"" ",.(x1 , •• " xn) 
to the derivatives of F. We have, obviously, 

(2.5) 
where 

r'p,,,; == d/.l,ai + (I/A)eI'iai. (2.6) 

In particular, as A = I, i.e., r/.l· = r'/.lV = g/.lv, our 
derivative is back to the one given by Rohrlich and 
Wilner.s 

It must be noted that our definition of functional 
derivatives is independent of the Lorentz condition; 
it can be applied to any four-vector field (not neces­
sarily a pure spin-l field). But, for a pure spin-l 
field, it is important to note that our definition is 
consistent with 

[F, a/.l(x)] :b -ifA/.I,,(X - Y) ~ try (2.7) 
baa(y) 

for all A, where A/.I"(x - y) == d/.laA(x - y). This 
follows immediately from the fact that 

f
A/.Ia(x - y)ea/l lJ{ d4y 

~a (y) 

4: fe/laA"/.I(X - y)~ d4y :!: 0, 
~a/l(Y) 

since (2.7) is assumed to be a well-defined convolution 
and e/la dal.l = 0. However, in the next section w.e 
see how our definition affects the Lorentz condition 
for all A, including, A = 0. 

m. SUBSIDIARY CONDITION AND 
FUNCTIONAL DERIVATIVES 

The way we define the functional derivatives for a 
vector field leads to a weak Klein-Gordon equation 
just as for a scalar field,4 i.e., 

Kal.l(x) ::1£ 0. (3.1) 
This is because 

~KaJl.(x) 4: K lJaJl.(x) :b KPV~(x - y) ¥= O. (3.2) 
lJa .(y) lJav(y) 

Since (3.2) holds for all A, Eq. (3.1) is a weak 
equation independent of rl.lv. Now let us consider the 
Lorentz condition. For a spin-l field, we know 

(3.3) 

and we would like to know if this equality can hold 
strongly. Consider its functional derivative 

ba"aix) 4: aar"Jl.b(x - y) 4: AOJl.b(x - y). (3.4) 
ba/.l(y) 

In (3.4), we have made use of the equality o"e"/l = op. 
It is obvious that, for all A ¥= 0, (3.4) does not vanish. 
We conclude that the Lorentz condition can only be 
weak for A ¥= 0. For A = 0, (3.4) vanishes and the 
Lorentz condition becomes a strong equation. In the 
following we shall treat this case in more detail. 

When A = 0, r/.l' becomes 

rJl.v = d/.lv == gJl.V _ 01.10· • (3.5) 
o 

The relation (2.4) is still valid, i.e., 

< 
bflF ) = d/.l'''1 ••• dl.lna" 

bal.l1 • •• lJa/.ln 0 

X ft'l ...• JXl , ... ,xn). (3.6) 

Now since A = 0, the inverse of r/lV
, i.e., (2.6), is not 

defined, and the expression (2.5) cannot hold. We 
have, rather, the following expression for the func­
tionsf: 

< 
bnF ) 

IJ1.1" . Jl.to(Xl, ••• , x n) = b /l b /l + XJl.l"· /.In' 
all ••• a/ 0 

(3.7) 
where Xpt . .• Pn are arbitrary functions satisfying 

dP,aiXal ... a .. = 0 for an i of 1 ... n. (3.8) 

The expression (3.7) is obviously the most general 
solution of (3.6). We see that, as /,. = 0, the way we 
define the functional derivatives can only determine 
the coefficient functions (e.g., the f's) of an operator 
(e.g., F) up to an arbitrary function X

Pl
'" P .. ' Since 

a physical quantity is determined uniquely by the 
derivatives of the S operator, we can already foresee 
certain invariant properties from (3.7). We study 
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these properties in the following sections. Here we 
merely point out that 

lJnF lJnF 
d"llZl ... d""IZ" = , (3.9) 

lJalZl ... lJa u
" lJa"l ... lJa"n 

and so 
lJnF 

a", 4: ° 
lJaf' . . . lJa~" 

(3.10) 

for any i of 1 ... n. In particular, the current rex), 
defined to be 

rex) == is* ~, 
(ja" 

will always satisfy 

(3.11) 

The strong equalities 4: here, of course, are with 
respect to the functional derivatives of a" with A = 0. 

We conclude this section with the following remarks. 
The functional derivative defined in Eq. (2.2) with 
A = 0, as we have seen above, naturally leads to the 
strong Lorentz condition. Conversely, if the free 
field is assumed to satisfy the strong Lorentz condition 
in addition to the weak Klein-Gordon equation, then, 
as it is obvious from (3.4), the functional derivative 
is necessarily defined as (2.2) with A = 0. The in-field 
in this case is of the form 

a"(x) 4: f d"lZllJ(X - x1):aIXl : d
4x1· (3.12) 

IV. NEUTRAL VECTOR MESON THEORY 

As an application we consider a neutral vector 
meson with mass m. All the usual assumptions of an 
asymptotic qua~tum field theory2-4 are assumed to be 
true. In addition, the free fields a", which span a 
Hilbert space H a , are assumed to satisfy 

and 

Ka"(x) g;, 0, 

alZaix) 4: 0, 

(4.1) 

(4.2) 

[a"(x), aV(y)] = -i d"V~(x - y). (4.3) 

The functional derivative is defined by (2.2) with 
A = 0. In particular, we have 

and 

lJa"(x) 4: d"vt5(x _ y) 
lJaiy) 

(4.4) 

[a"(x), F] 4: -ifd"I%~(X - y) ~ d4y. (4.5) 
(ja"(y) 

The S operator related the out-field to the in-field in 
the usual fashion: 

a~ut == S*afnS, S*S b 1, (4.6) 

where the S operator defined in the Hilbert space Ha 
is of the form (a" == ain) 

S .!. ~ .1 fWI%' ... I%,,(x ..• x) 
- £.. I 1" n 

n=O n. 

The functions ware the coefficient functions of the 
S operator. 

Now, because of (4.1)-(4.3), one can express a" 
in the following way: 

a"..!!.. d"lZ-I. - 'fJa' (4.8) 
where cp" satisfies 

(4.9) 
and 

[cp"(x), tf(x)] 4: -iN'V(x - y). (4.10) 

The A"v are given by 

A"V(x _ y) == d"V~(x _ y, m2) 

+ rle"V~(x - y, ~2m2) (4.11) 

with parameters 'YJ and ~. Our purpose here is to 
formulate the theory for a" in terms of tP", since the 
renormalizability and gauge-invariance properties of 
our theory can then become explicit. One notes that 
tP" so defined is, in fact, the four-vector field discussed 
by Feldman and Matthews.s Naturally the field cp" 
contains a scalar field with mass pm in addition to 
the spin-l field with mass m. More explicitly, cp" can 
be written as 

cp"(x) 4: d"lZalZ + ~ a~b , 
where the b field satisfies 

[hex), h(y)] :b i~(x - y, (~m)2). 

The h field is the scalar field and has the familiar 
troublesome nature as a timelike photon field. One 
can overcome this difficulty by various ways-for 
example, by introducing an indefinite metric as was 
done by Feldman and Matthews.s At any rate,here itis 
enough merely to point out that an Hilbert space Hq, 
can be constructed from cp", the tP"(x)'s form a com­
plete set in Hq" and Hq, contains Ha. Therefore, our 
functional derivatives with respect to tP" can be defined. 
Since 

[cp"(x), F] 4: -ifN'I%(X - y) ~ d4y, (4.12) 
t5cpl%(y) 

and since we have introduced the arbitrary parameter 
'YJ in A"v, it will be no loss of generality to take A = 1 
for the definition (2.2). Thus, in particular, we have 

lJcp"(x) 4: g"vlJ(x - y), (4.13) 
lJcpv(y) 
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and 

<5a"(x) 4: d"v<5(x _ y). (4.14) 
<5rpv(Y) 

Now let us come back to the S operator defined in 
(4.6), which has the expression (4.7) in Ha C H",. 
Noting that, from (4.10), 

[a"(x), bey)] :k (rll.tm)-l[d~"rp,.(x), oerpp(y)] 

:k (1/f.tm)-1 d~"O~[rp,,(x), rpp(y)] 

:k 0, 

al"s are the same as those between rp"'s. The fact that 
the matrix elements are independent of the parameters 
1/, ~, as was also thoroughly discussed by Feldman 
and Matthews,8 can be seen to be the gauge-in variance 
property of our theory 

In the next section, we confine ourselves to the 
most convenient gauge, i.e., 1/ = 1, ~ = 1, and for­
mulate our theory in the framework of the previous 
approach. 2-4 

V. FINITE THEORY OF NEUTRAL 
VECTOR MESON 

we can already see that 

[S, b] :k [S, O"rp,,] :k o. 
The current j"(x) and the interpolating field are 

(4.15) defined by 

The S operator can also be written in terms of normal 
products of 4>". In order to do so, it is most convenient 
to make use of functional derivatives. Since 

!5a"(x) 4: 0 and ~ 4: 0 
!5b(y) !5b(y) , 

we immediately have 

!5S 4: f~ !5aiy) d' 
<5rp"l !5a",(y) !5rp"l y 

4:fd"l",!5(X - y) ~ d4y 
!5a..(y) 

4: d <5S 4: !5S (4.16) 
"1'" !5a", !5a"l 

Similarly, we have in general 

!5nS !5nS ----- 4: d"l"'l •.. d"n"'n ----
!5rp"l •.. !5rp"" !5a"'l ... !5a"'n 

(4.17) 

for all n > O. 
The above results can be summarized as follows; 

Using the S operator of (4.6), we can now write 

rp~ut :k S*rpfnS, 

and the S operator is of the form 

: d'XI' .• d4xn 4: I - dIl1"1 ••• d".,tt .. 0() 1 f 
n=O n! 

(4.18) 

x Will'" " .. (Xl' .. Xn): rp"l ••• rp",,: d"xl ..• d4xn' 
(4.19) 

where Will" . " .. (Xl .•. Xn) are the coefficient func­
tions given in (4.7). 

Therefore, we can now formulate the theory for a" 
in terms of 4>" since the matrix elements between 

."( ) - ·S* <5S 8 's* !5S JrX = l - = I -

!5rp" !5a./l 
and the field equation 

(5.1) 

K<I>" 4: rex) + Krp"(x). (5.2) 

Since we choose 1/ = ~ = 1, i.e., Fermi-Stuckelberg 
gauge, the in-field 4>"(x) satisfies 

Krp"(x) :i£: 0, (5.3) 

[rp"(x), rpV(y)] :k -ig"VA(x - y). (5.4) 

Making use of the asymptotic condition, we can 
rewrite Eq. (5.2): 

<I>./l(x) 4: rp"(x) - f AR(X - y)r(y) d'y. (5.5) 

Exactly analogous to a previous work,3.4 the following 
equation can be derived from the assumption of 
Bogoliubov causality: 

i bj"(x) :k K",K/J",ul<l>"(x), <l>V(y)] _ ig./lVK",!5(x _ y). 
<5rpv(Y) 

(5.6) 

One must recall that the S operator in the present 
formulation is always restricted by the condition 
(4.17). It is quite obvious that the current satisfies 

A more useful equation can be obtained by eliminating 
CI>"(x) from (5.1), (5.4), and (5.5). In analogy to the 
scalar case,2-4 we have 
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by 

P12(F(XlX2» == (KlK2)012 r~ .. iXl - Yl) 

X ~R(X2 - Y2)F(YlY2) dYl dY2 (5.9) 

and 1 - Bl2 == Pl2 + P 2l • Again because of the con­
ditions (4.17), (5.8) can also be rewritten as 

(1 _ B )S* ~ :4: _dlll"l dll21lS P (~S* ~S) 
12 bCPlll CPll2 12 bcplll bcpll2 

_ dlll"l dll21l2p (bS* bS*). (5.10) 
12 bcp"2 bcp"l 

The solutions to (5.10) are, in general, of the form 

b2S 
S* :4: dlll"l dIl21l2{3"t"2 (Xl - X2) - dlll"l d", IX2 

bCPlllbCPll2 

{p (bS*~) + p (bS* ~)} (511) 
X 12 bcp"l bcpllS 21 bcp"a bcp"l' . 

where (3""(12) is an homogeneous solution to (5.10). 
The same arguments as given in a previous work2- 4 

follow from Eq. (5.11). Since the integral equation 
(5.11) is the same as the one for the photon, we shall 
not go into the details of this argument. We merely 
point out here that, from Eq. (5.11), it is very con­
venient to obtain perturbative solutions and that, 
because of (c/J"1c/J"2)O = _igIlI1l2~+(Xl - X2), Eq. (5.11) 
gives the finite results, as is the case for scalar or 
photon fields. 

VI. DISCUSSION 

We have formulated a vector meson theory using 
a new definition of the functional derivative. It is 
seen to be applicable to interactions with currents 
satisfying olljix) 40. in the present work, we have 
only treated a neutral vector meson, but extensions 
to a charged vector meson or to interactions of a 
vector field and other fields are quite straightforward. 
It should be noted that all the notations of .strong 
and weak equalities in previous sections are only 
with respect to vector fields. Consequently, the present 
formulation is applicable to, for example, an inter­
action like ijryll'IjJCPIl' 

The present formulation reduces to a photon 
theory as m= O. In particular, if we introduce 
rex) == i: ip(X)yll'IjJ(X), it becomes quantum electro­
dynamics. This follows immediately from the fact 
that our basic equation (5.11) is valid for both m ¥= 0 
and m = O. For m = 0, Eq. (5.11) is the same as 
Pugh's equation for quantum electrodynamics2 except 
that we have dllV's explicitly in our equation. As an 
example, for the two-point functions, Eq. (5.11) 

becomes 

/ b
2
S \ _ ( b

2
S ) 

\balllbaIl2/0 - bCPlll bcp"2 0 

= _dlllill dIl21l2{P12U"ljll.)O 
+ P2lU"2jlll)O}' 

Because this is a function of Xl - X2 and only the 
transversal part of {P12(j1l)1l2)O + P2l (jll.j"I)O} will con­
tribute, we have 

( b b2: /\ = -tdlllll'{P12UU2)O + P2lU~jl)O}' 
alll all2 0 

Substituting jll = i: ipinY,,'ljJin: for quantum electro­
dynamics (the photon with mass m and the electron 
with mass M), we have the second-order two-point 
function 

/ b2s \(2) 

\baillball./o 

= -tdIlI1l2{3Pl{i:.dK2(K2 + 2M2) 

X (K2 ~24M)!~+(Xl - X2, K2) ] + (1 +-) 2)} 
= dlll1l2 KlK2{iO(Xl - X2) roo dK2 

3(27T)2 J4M2 (K2 _ m2)2 

X (K2 ~24M)!(K2 + 2M2)~c(Xl _ X2, K2)} 

= (0 - m2)2{_Z_' - fd4peiP(IZI-IZ2)(Plllpll. _ gill".) 
1 3(27Tt p2 

X roo dK2 2(K2 - 24M2)! 
J4M2 K2 - m K 

X . 
K2 + 2M2 1 } 
K2 _ m2 K2 + p2 - i€ 

We see that this is the renormalized photon propaga­
tor2 when m = O. 

In conclusion, we have introduced a new definition 
of functional derivatives for vector fields. As an 
application, a finite, gauge-invariant formulation for 
neutral vector fields is developed based on free fields 
satisfying the Klein-Gordon equation weakly but 
the Lorentz condition strongly. It produces the 
renormalized results of the conventional neutral 
vector meson theory and photon theory. The most 
important feature of the strong Lorentz condition 
is that it leads to gauge-invariant matrix elements. 
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The procedure by which all elements of the S matrix in multichannel scattering problems are expressed 
in terms of the Fredholm determinant of the Lippmann-Schwinger equation, is generalized to the case of 
"continuous channels." This is a preliminary step toward its generalization to three (or more)-partic1e 
problems, in which the possibility of "ionizing" an initial bound state always introduces such a contin­
uum. It is found that, whereas in the case of discrete channels the necessary functions can be obtained 
from the Fredholm determinant either by analytic continuation in the total energy, or by a "substitution 
rule," for continuous channels only the latter procedure works, and it is not equivalent to an analytic 
continuation. 

I N the many-channel problem the various elements 
of the S matrix for elastic and inelastic scattering 

can be obtained directly from the Fredholm deter­
minant D(E) of the Lippmann-Schwinger equation. 
Let D;p 00 o(E) be the analytic continuation of D(E) 
along a contour that circumscribes the thresholds of 
the (J., (J, .•. channels, and no others. Then the S 
matrix element for elastic scattering in the (J. channel 
is given byl 

SaiE) = D;(E)/ D(E) (1) 

and the element for .inelastic scattering from the (J. to 
the (J channel, byl 

S!p = (D; Dp/ D2) - (D;p/ D). (2) 

It has been a tantalizing problem for some time to 
generalize these relations to the case of "continuum 
channels" which arise whenever more than two 
particles are possible as final products of a reaction. 
Only after such a generalization can one proceed to 
transfer these determinantal techniques to realistic 
problems involving more than two particles. In the 
present paper we give such a generalization. 

An alternative way of defining the functions 
D;p 0 0 0 is to consider the Fredholm determinant D as a 
function of all the channel momenta separately: 

D = D(kl , k 2," '). 
We then say 

Dap ... (k l , k2,"') = D("', -ka,"', -kp," .), 
(3) 

that is, the momenta -ka' -kp ,' •• are substituted 
for ka' kp, .... If Eqs. (1) and (2) were to be used for 
numerical calculations, that would in fact be the 
practical manner of calculating Dap 0 0" It would be 
quite unnecessary to perform an actual analytical 
continuation. The kernel K of the Lippmann-

• Supported in part by the National Science Foundation and the 
Army Research Office (Durham) 

t A condensed version of this paper was presented at the Annual 
Meeting of the American Physical Society, New York, January 1967. 

1 R. G. Newton, J. Math. Phys. 2, 188 (1961). 

Schwinger equation 
K=GV (4) 

contains the channel momenta explicitly. Each 
element of the diagonal matrix Green's function G 
depends on its own channel momentum only. Re­
placing ka by -ka means simply replacing Gt by G;, 
but leaving all other elements of Gas G+. We may call 
this definition of Dap 0 0 • the substitution rule. 

The two alternative ways of defining D;p 00' are, of 
course, identical. Each ka may be regarded as a 
function of the total energy E, 

ka = (E - Ea}i, 

where Ea is the threshold of the (J. channel. The 
substitutions are then accomplished by analytic 
continuation in E around the branch points at the 
relevant thresholds. 

Now even in the conventional many-channel 
problem, there are occasions when the substitution 
method can be used, yet it is not an analytic continua­
tion. That happens when there is coupling between 
different angular momenta. Neutron-proton scattering 
in the triplet state of parity ( - )i+1 is the simplest such 
example. We may treat it as a two-channel problem 
in which the two-channel momenta are equal. Equa­
tions (1) to (3) are then applicable, with k~ = k~. But 
if we consider D(k1 , k 2) as a function of E = k~ = k~, 
then there is no way of getting from D(kl' k 2) to 
D(kl' -k2) by analytic continuation in E. 

Consider now a problem with a "continuity of 
channels." That is, some of the matrix summations 
in the many-channel problem are replaced by inte­
grals. (This is intended purely as a mathematical 
model and is not meant to imply that any physical 
reaction problem should in fact be treated that way.) 
In that case one cannot meaningfully speak of 
separate-channel momenta, and Eq. (3) becomes 
meaningless. There is then also no sensible way of 
making an analytic continuation in E in order to get 

2347 
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from D(E) to an analog of D;p .. . (E). But it is neverthe­
less meaningful to generalize the substitution rule in 
the following way. 

When the channel index contains a continuum, then 
Kin Eq. (4) is an integral operator in the additional 
sense of channel integration, with the structure 

K(ot, (J) = G(E - EJV(ot, (J). 

We may now specify that in a certain given region, say 
E!l) < Ea. < E!2) , the outgoing-wave Green's function 
is to be replaced by an incoming-wave Green's 
function. This will lead to a new operator K- and a 
new Fredholm determinant D- (which, of course, 
depends on E!I) and E~2), as well as on E). The idea 
then is to make the interval E~2LE~1) very small. We 
see that in the limit in which it shrinks to zero we get a 
sensible analog of Eqs. (1) and (2). 

Before proceeding to the proof of these statements, 
let us discuss their implications. In the conventional 
multichannel problem in which each channel has' a 
different threshold, it was sufficient to consider the 
Fredholm determinant D simply as a function of the 
total energy E. In that limited context the substitution 
rule is equivalent to the result of an apalytic continua­
tion in E. When we go beyond this region we find that 
the substitution rule has a relatively simple generaliza­
tion. It is then, however, not equivalent to an analytic 
continuation in the energy. In fact, there is no way of 
getting the result of the substitution rule by consider­
ing D as a function of the energy alone (and possibly, 
of other conserved quantities). The manipulations that 
lead from D to D- must be performed in the course of 
its construction as a Fredholm determinant of 1 -
GV; they cannot be performed on the resulting func­
tion once it has been constructed. We may therefore 
conclude that while the equivalence of substitution 
rule and analytic continuation in the "two-particle 
sector" is an interesting and useful fact, since it has no 
analog in the much larger more-than-two-particle 
region, it should not be regarded as very fundamental. 
In a certain sense it may be said to be accidental. 2 

2 The reason why I am stressing this point so explicitly is that there 
may possibly be a lesson to be learned here whose importance 
transcends the many-channel problem and nonrelativistic quantum 
mechanics. With all due caution necessary when drawing analogies 
among different parts of physics, it is, I believe, worthwhile never­
theless to point to a possible parallel in field theory. There too we 
have a substitution rule that connects collisions or reaction processes 
of different particles or channels. In the realm of two-particle to two­
particle collisions, this substitution rule has been recognized as 
being equivalent to an analytic continuation. This recognition was 
then exploited for many fruitful dispersion theoretical techniques 
and finally attempts were, and are, made to put the entire analytic 
continuation apparatus at the very basis of the field theoretical 
dynamics. It is not inconceivable that here too we are victims of an 
"accident." Some of the analytic continuation procedures may 
have no meaningful generalization to the much richer area of 
particle production. One may then have to conclude that analyticity 
considerations, though useful and interesting, are not as funda­
mental as we thought. 

Another way of stating this result succinctly is the 
following. In the (discrete) many-channel problem, 
all elements of the S matrix can in principle be deter­
mined from a knowledge of the sum of the eigenphase 
shifts for all energies. [We can calculate D(E) from 
det S and then the S"p by analytic continuation of 
D(E) to its various sheets.] For continuous channels 
this is not true. 

We now turn to the details of the substitution rule. 
As a preparation we outline first a convenient tech­
nique of deriving Eqs. (1) and (2) due to Sugar and 
Blankenbecler.3 It obviates the necessity of introducing 
generalized Jost solutions and is much more direct 
than that of Ref. 1. 

Let us first consider a simple one-channel problem 
of fixed angular momentum. Then K = GV is the 
kernel of the radial Lippmann-Schwinger equation, 
G being the outgoing-wave Green's function 

G(E) = (E + i€ - HO)-l. (5) 

The Fredholm determinant is given by 

D(E) = det [1 - K(E)]. (6) 

Let D-(E) be the Fredholm determinant of K- = 
G-V, 

G-(E) = (E - i€ - HO)-l. 

Now, if 11K == K - K-, then 

or 

D- = det (1 - K-) = det (1 - K + 11K) 

= det (1 - K) det [1 + I1K(1 - K)-l], 

(5') 

D-/D = det [1 + I1K(1 - K)-l]. (7) 
But 

I1G = (E + i€ - HO)-l - (E - i€ - Ho)-l 

= -27Tib(E - Ho) = -27TiP(E), 

where P(E) is the projection onto the unique4 eigen­
state of Ho with eigenvalue E. In Dirac's notation 

peE) = IE)(EI, 
if 

Ho IE) = E IE). 
Hence 

11K = -27TiP(E)V. 
Therefore, 

D-/D = det[1 - 27TiP(E)V(1 - K)-l), 

= 1 - 27Ti (EI V(1 - K)-l IE), 

= 1 - 27Ti (EI V + VeE - H)-I V IE), 

(8) 

= 1 - 27TiT(E) = See). (9) 

Remembering that the Fredholm determinant equals 
the Jost function,S we have therefore found Jost's 

3 R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1965). 
4 The angular momentum being fixed, there can be no degeneracy. 
• If the latter is defined as in my book Scattering Theory of Waves 

and Particles (McGraw-Hill Book Co., New York, 1966), and not in 
the more usual fashion. 
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decomposition of the S matrix without using any of 
his apparatus. 

The foregoing technique may now be applied in the 
full three-dimensional SchrOdinger equation. To do 
that we consider the Fredholm determinant of the full 
Lippmann-Schwinger equation as a function of the 
wavenumber for each angular momentum state 
separately, with k~ = k~/' and we write 

DI(E) = D(kl' ., " -kz • •• '). 

The corresponding ilK then picks out the projection 
onto the lth angular momentum eigenstate of Ho, 
and we get 

Di/ D = St. 

In this case the result, of course, is just Eq. (9) again, 
because, I being conserved, the full Fredholm deter­
minant is just the product of all the radial ones. 

We now turn to the multichannel problem, where 
K is a matrix with channel indices oc, (J, of the structure 

KaP(E) = GaCE - EIt)Vap , (10) 

EI% being the threshold of the oc channel. Then 

D; = D(k1 .···, -k","') 

is the Fredholm determinant of the operator obtained 
by changing Ga to G;, but leaving all Gp , (J::;r6 oc, 
alone. This means 

ilK == -27TiPiE)V, 

where P,,(E) is the projection on the eigenstate of Ho 
in the oc channel: 

Consequently, we get 

D; = 1 - 27Ti ,,(EI V(1 - Kjl IE)" = SIt'"~ 

which is Eq. (1). 
For inelastic collisions we write 

D;p = D(k1 ,"', -kit"", -kp,"') 

and get 

ilK = -27TiP"p(E)V, (11) 

if Pl1.p(E) is the projection on the eigenstates of Ho in 
the oc and {3 channels. 

Now if Px is any orthogonal projection on a sub­
space .re, then 

det (1 - PxA) = detx (1 - A:Ie), (12) 
where 

Ax = PxAPx, 

and detx is the determinant of the operator on the 

subspace .re. Consequently, we get 

D;p! D = detaP {1 - 27Ti[(EI V(1 - K)-lIE)]ap} 

= det [S]."p = I S«« Sap I. 
Spa Spp 

Because of the symmetry of Sand (1), this equation is 
identical with (2). 

Now this procedure is readily extended to the 
reversal of more than two signs. Forming 

D;p ... = D(k1 ,' ", -ka ,' •• , -kp , ••• ) 

we need 

ilK = -27TiPap ., ,(E)v, (13) 

where P«p . . . (E) is the projection on the eigenstates of 
Ho in the oc, {J, .•• channels. The result is evidently 

Saa S«p 

D;p... . Spa Spp 
-- = det [S]«p ... = 

D 
(14) 

the right-hand side being the determinant of the 
oc, (J, ••• submatrix of the S matrix. Since Eqs. (1) 
and (2) express each element on the right of Eq. (14) 
in terms of D, Eq. (14) is an equation between values 
of D with various sign reversals. The special case of 
three such sign changes is given by Eq. (4.4) of Ref. 1. 

We now want to generalize these results to the case 
of continuum channels. Let us suppose that the 
channel indices form partly a continuum and partly a 
discrete set. When matrix multiplication calls for index 
summation, we may combine both into Stieltjes 
integrals. Therefore, K is now an integral operator not 
only in the sense of coordinate or momentum vari­
ables, but in the additional sense of Stieltjes channel 
integration with a given weight function. Its structure 
is (10). Let us then replace G by G- in the region R of 
channel integration, and.call the corresponding value 
of D, DR' We then get 

DiilD = det SR' (15) 

where SR is the submatrix: of S that corresponds to the 
region R. We must now look at this in more detail. 

Equation (15) is an exact relation, no matter how 
large the region R is. If R comprises all open channels, 
then DR is obtained by replacing all positive-energy 
Green's functions G+ by G-, and leaving the negative­
energy (closed-channel) Green's functions exponen­
tially decreasing. Let us call the DR, so defined, simply 
V-. Because of the reality of the closed-channel 
Green's functions, we have 

V- = D*'. 
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The right-hand side of (15) now is the product of all 
the eigenvalues of S; that is, 

D-jD = e2i6, 

where b is the sum of all the eigenphase shifts. Of 
course, there is a continuity of the latter. The spectrum 
of S i~, at least partly, continuous in the present case. 

We now want to let the extension of R shrink to 
zero. Let us first suppose R contains no discrete 
points. The range e of energies for which G is replaced 
by G- is made small and we are interested in the 
leading terms in its extension only. The integral 
operator So will then differ only infinitesimally from 
the unit operator, 

So(E; k, k') == b(k - k') - T(E; k, k') (16) 

and we get 

DO(E) = 1 _ f dkT(E; k, k) (17) 
D(E) Je 

with k = (E - E,}:. The amplitude T(E; k, k') is, 
of course, of no direct physical interest, because it 
leads from the continuum to the continuum and 
hence is the analog of three-particle to three-particle 
scattering, for example. But we need Eq. (17) in the 
next step. 

Suppose now that R contains one discrete point IX 

and a continuum C of small extension. Then 

Tr TR = T"" + fe dkT(k, k), 

Tr T~ = T!" + 2Ldk[7;.(k)]2 + ... , (18) 

Tr Til = T:" + nIadk[Tik)]2T:;2 + ... , 

where TaCk) is the off-diagonal element connecting 
the discrete IX channel and the continuum k channel, 
and we have used the symmetry of T (assuming time 
reversal invariance). Because 

det (1 - T) = exp [Tr In (1 - T)] 

= exp { - ~ ~ tr Tn}, (19) 

we therefore get 

det (1 - TR ) = a exp {[1 - b + (cIa)] + ... } 

where 
= ab - c + ... , (20) 

a = 1 - 7;.", b = 1 - LdkT(k, k), 

c = 50 dk[Tik)]2 

and the result is exact to first order in the range of the 
continuum integration. Because of (17) and (1) we 
therefore find that 

f dk[T (k)]2 = D; Do _ D;a (21) 
Je" D2 D ' 

which is the analog of (2). It is an exact relation in the 
limit in which the range C of the integral on the left 
shrinks to zero. Since then Do ---+ D and D;e ---+ D;, 
the right-hand side also vanishes and we may write 

[TaCk)] = lim (D; Do _ D;o) Ie, (22) 
0--0 D2 D 

if by Dc we mean, "Between k and k + C replace 
G by G-." 

In Eq. (22) the continuum analog of Eq. (2) is 
exhibited in the form of a certain type of derivative. 
In this way ids related to the method ofBlankenbecler6 

which uses variational derivatives with respect to the 
Green's function. Perhaps one should say that this is 
the underlying reason why that variational procedure 
works when it does. 

It should be stressed that in the present paper the 
determinantal method has been generalized to sche­
matic continuous channel problems only. Its use in an 
actual three (or more)-particle problem is still another 
matter. That will be pursued in a future publication. 

6 R. Blankenbecler, in Strong Interaction and High Energy Physics, 
R. G. Moorehouse, Ed. (Oliver and Boyd, Edinburgh, 1964), p. 411. 
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The .second-ord~r transition of a super~on.ducting m~teriaI from normal to superconducting state 
accor~mg to the Gmzburg-Lan~au theo~y IS ngorously discussed. The bifurcation of a superconducting 
state IS proved for both t~e A~flkosov mixed state and the case of a film in a parallel magnetic field when 
the flux or external field IS slIghtly less than critical. The existence of a mixed state for all values of flux 
below the critical value is also proved. 

INTRODUCTION 

THE Ginzburg-Landau (GL) equations are a set of 
nonlinear partial differential equations which 

describe, within certain limitations on the temperature 
and impurity content, the behavior of superconducting 
materials in external magnetic fields. Although they 
were originally derivedl via a phenomenological 
approach, they may be regarded as fundamental 
equations since Gor'kov2 and others showed how to 
derive them from a microscopic theory of super­
conductivity under the assumption that the tempera­
ture is close to the transition temperature. Moreover, 
there is good agreement between the predictions of 
the GL equations and the experimental properties of 
both type-I and type-II superconductors.3 However, 
except for approximate and numerical calculations, 
there seems to exist only one rigorous mathematical 
treatment of these interesting equations, by Carrol 
and Glick.4 An existence and uniqueness theorem for 
the GL equations is given in Ref. 4 under the rather 
restrictive assumptions that the external magnetic 
field, as well as the parameter k in the GL equations 
(see Secs. 1,2 below), are small. Of course, since the 
GL equations always possess a "trivial" solution 
corresponding to the normal state-in which the 
"order-parameter" function (see Sec. 1) vanishes 
identically-the solution referred to above is a 
"nontrivial" solution describing the superconducting 
state. 

In this paper we rigorously discuss (i) the bifurcation 
of the nontrivial (superconducting) solution to the 
GL equations from the normal state as the external 
field, or the flux, becomes slightly less than its 
critical value which is determined by the linearized 
equations; and (ii) the existence of nontrivial solutions 

* Present Address: Mathematics Department, American U niver­
sity of Beirut, Beirut, Lebanon. 

1 V. Ginzburg and L. Landau, Zh. Eksperim. i Teor. Fiz. 20,1064 
(1950). 

• L. Gor'kov, Zh. Eksperim. i Teor. Fiz. 36, 1918 (1959) [English 
Transl.: Soviet Phys.-JETP 9, 1364 (1959)]. 

3 See, for example, A. M. Toxen and M. Bums, Phys. Rev. 130, 
1808 (1963), where other references are given. 

4 R. Carrol and A. Glick, Arch. Rat!. Mech. Anal. 16, 373 (1964). 

for all values of flux or field less than critical. We 
restrict the discussion to the two cases of a plane film 
in a parallel magnetic field and the Abrikosov mixed 
state5 because of their physical significance, although 
the methods used are also applicable to an arbitrary 
smooth superconducting body in an external magnetic 
field. The following is an outline of the paper. In 
Sec. 1 we consider the ordinary differential equations 
form of the GL equations and give a simple proof of 
the existence of nontrivial solutions for values of the 
field near-and slightly below-the "second" critical 
field. The so-called "unsymmetric" or "surface-state" 
solutions of Saint James and De Gennes,6 associated 
with the "third" critical field, are also discussed. In 
Sec. 2 a similar, but more complicated, proof is given 
to demonstrate the existence of the Abrikosov mixed 
state for values of flux slightly lower than the critical 
flux. The proofs in these two sections amount to 
proving the convergence of a perturbation procedure. 
In Sec. 3, we use the direct methods of calculus of 
variations to prove the existence of an Abrikosov 
state which minimizes the free energy for all values of 
flux less than critical. 

1. BIFURCATION PHENOMENA FOR A FILM 
IN A PARALLEL MAGNETIC FIELD 

Consider a superconducting slab of thickness d in a 
parallel magnetic field. In normalized units (see 
Marcus7) the GL equations are equivalent to 

d24>/dx2 = k24>[4>2 - 1 + AB2] (-d < x < d), 
(1.1) 

d2B/dx2 = 4>2B, (-d < x < d), (1.2) 

d4>/dx = 0, dB/dx = 1 (x = ±d), (1.3) 

where A. = h2 is the square of external field, and 
hB = magnetic potential. It is clear that 4> == 0, 

S A. Abrikosov, Zh. Eksperim. i Teor. Fiz. 32, 1442 (1957) 
[English Trans!.: Soviet Phys.-JETP 5, 1174 (1957)]. 

• D. Saint-James and P. DeGennes, Phys. Letters 7,306 (1963). 
'P. Marcus, Research Note NC-489, T. J. Watson Research 

Center, Yorktown Heights, N.Y. (1964). Also in Proceedings of the 
Conference on the Physics of Type II Superconductivity (Western 
Reserve University Press, Cleveland, Ohio, 1964), Vol. 3. 

2351 



                                                                                                                                    

2352 F. ODEH 

B = (x + c), where e is an arbitrary constant, is a 
solution to (1.1)-(1.3). This solution corresponds to 
the normal state and will be referred to as the "trivial" 
solution. As in classical bifurcation theory, one seeks 
nontrivial solutions which "split off" this normal 
solution and hence are close enough to it. We therefore 
select a convenient parameter, call it €, which measures 
the deviation of the nontrivial solution from the normal 
one; for example, we may choose € to be proportional 
to 

II rf>112 == L:d 

rf>2 dx. 

Introducing the functions ?P = eirf>, 
A = e1[B - (x + c)], 

and substituting in Eqs. (1.1)-(1.3), we obtain 

L,?p == k-2?p" + {I - A(€)[X + e(€)]2}?p 

= €,h[?p, A, A, €] (1.4) 
and 

MA == A" = N[x, ?p, e] + €h[?p, A], (1.5) 

with the boundary conditions ?P' = A' = ° at ±d. 
Here, N = (x + e)?p2; 

,h = ?p3 + A?p[2(x + e)A + €A2]; 

/2 = ?p2 A; and the primes denote differentiation with 
respect to x. It is clear that there is no loss of generality 
in restricting A to be orthogonal to constants, i.e., 
I A dx = 0, since the mean value of A may be absorbed 
into the constant e. To discuss the existence of non­
trivial solutions to Eqs. (1.1)-(1.3) it is sufficient to 
consider the equivalent equations (1.4)-(1.5). In the 
limit € = 0, 0.4) becomes a linear equation which has, 
for any fixed e, nonzero solutions for a discrete set of 
values An(e), of the eigenvalue parameter A = h2• It is 
easy to check that An ---+ - 00 as n ---+ 00, but that there 
exists at least one positive eigenvalue. Let Ao = h~ 
denote the largest positive eigenvalue and ?Po(x) the 
associated normalized eigenfunction which is clearly 
unique because it has no nodes. We can, at this stage, 
put € = ° and ?P = ?Po in (1.5) and solve for the first 
approximations Ao, Co of A, e, but it will prove more 
convenient not to do so. Instead, we argue as follows: 
if the right side of (1.5) were orthogonal to 1, i.e., if 

J~d?P2(C)[(X + c) + €A] = 0, (1.6) 

then one can invert (I.5) by means of a generalized 
Green's function for the operator M to get 

A - f~dG(X' m(~ + C)?p2 + €?p2AJ d~ = 0. (1.7) 

We now discuss first the existence of solutions to the 

slightly different problem defined by (1.4) and (1.7) 
and then arrange for the constant e to satisfy (1.6), 
thus obtaining a solution to the original problem. If 
we set 

then the vector function Uo = (Ao, ?Po, Ao) is a solution 
to Eqs. (1.4)-(1.7) when € = 0, and hence it corre­
sponds to a trivial solution to the nonlinear problem. 
Following a standard argument we look, for small 
enough €, for a solution u( €) = [Ao + €Al (€), 
?Po + ?Pl(€), A(€)], where ?PI is orthogonal to ?Po· 
Substituting in (1.5) we find that ?PI , Al must satisfy 

LO?Pl = €[Al(€)(X + e)2(?po + ?PI) + /1 (u(€) , €)]. (1.8) 

Since Lo is self-adjoint, the right side of (1.8) must be 
orthogonal to ?Po, which leads to the bifurcation 
equation 

J~d AI(€)(X + e)2?po(?po + ?PI) + ?POfl(U(€), €) = 0. 

(1.9) 
Inverting the left side of (1.8), we obtain 

?PI - €f K(x, ~)[AI(X + C)2(?pO + ?PI) + fl(?P, A)] = 0, 
-d (1.10) 

where K, the generalized Green's function for Lo, is a 
continuous function which may be expressed in terms 
of the eigenfunctions of Lo. Consider now the system 
of equations (1.9), (1.10), and (1.7). The left sides of 
these equations define a nonlinear map N(u) = 
N[AI' ?PI' A; €) in the Banach space B = I @ C @ C 
where I denotes the real numbers and C the space of 
continuous functions on [-d, dJ with the maximum 
norm. The map N is bounded and continuously 
differentiable in Band €. This follows from the 
continuity of the kernels K and G and the differenti­
ability of the nonlinear perturbations /1' /2 in the 
space B. For € = 0, the equation N(u) = ° has the 
solution ?PI = 0, A = Ao, and 

Al = -[f~/l(?Po, Ao, Ao)?Po] X [f:?p~(X + C)2]-I. 

To prove the existence of a unique solution of 
N(u, €) = 0 for small enough €, we calculate the 
Frechet derivative (Jacobian) of the map N at this 
particular solution. This is obtained by functionally 
differentiating N with respect to AI' ?PI' A and is 
given by the matrix of linear operators 

(1.11) 
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where 

IXI = rd 
1f'g(x + e)Z dx, 

J-d 
RI = fY'I(O)1p~(X + e)2 

+ 1f'0[31f'~ + 2A.oAo(x + em dx, 

Rz = 2AoJ:(X + e)1f'~ dx, 

and P is the integral operator defined for any con­
tinuous functionf(x) by 

Pf(x) = -2J G(x, ~)(~ + e)1po(~)f(~) d~, 

and I is the identity operator. From the form of J and 
the fact that P is a bounded operator, J is clearly 
nonsingular. In fact, the form of J indicates the 
correct perturbation procedure. One solves for the 
second component 1f' of u, then the third, A, then 
the first component, AI' Now we turn to the bifurcation 
equation (1.6) which is an algebraic equation in c, €. 

For € = ° it reduces to 

fd1f'~(CO)(X + co) = 0, 

which is a rather complicated equation involving 
hypergeometric functions. By inspection, Co = ° is a 
solution. A calculation by Saint James and De Gennes6 

shows that it has other solutions CO,i' Moreover, for 
Co = 0, (1.6) is solvable, for small €, since its derivative 
r with respect to C at € = ° is given by 

(1.12) 

which is nonzero if Co = 0. We assume that r(co) also 
does not vanish; then we have the following: 

Theorem 1: There exists an €o > ° such that if ° < € ~ €o, there exist nontrivial solutions of Eqs. 
(1.4)-(1.5). 

Proof: Since J is nonsingular, the soft implicit 
function theorem in Banach spaces (see Ehrmann8) 

proves that the system (1.7), (1.9), (LlO) has a 
solution for small enough €. This solution defines a 
nontrivial function u(c, €). Since the orthogonality 
relation (1.6) is also solvable for c when € is small, the 
function' u(c(€), €) provides a nontrivial solution to 
(1.4)-(1.5) which proves the theorem. 

Remarks: (i) From the bifurcation equation (1.9), 
we notice that AI (O) is negative, at least for Co = 0. 

8 H. Ehrmann, Enseignement Math. (2) 9, 129 (1963). 

Since A is proportional to the square of the external 
field, the above theorem proves the existence of 
superconducting solutions of Eqs. (1.1)-(1.3) for fields 
slightly lower than the "critical field" h = At. 

(ii) If Co = 0, one gets the "symmetric states" 
(Marcus7) associated with the second critical field 
At = ho2 ' The other constants CO,i clearly give "un­
symmetric" states which may be associated with 
higher critical fields. The calculations of Ref. 6 show 
that for some optimal co,; one gets "surface states" 
where 1f'o is concentrated near the boundary and a 
"third" critical field h03 > ho2 ' 

(iii) The equations (1.1)-(1.3) have nontrivial 
solutions for all external fields h < he. This fact can 
be proved by the variational methods of Sec. 3. 
Since we prove the analogous theorem for the more 
complicated situation of Sec. 3, we give no proof here. 

2. BIFURCATION OF ABRIKOSOV'S 
MIXED STATE 

We consider now the partial differential equation 
form of the GL equations in the special "quasi­
periodic" case discussed by Abrikosov.5 The physical 
situation corresponds to a "vortex" structure in the 
x-y plane in which both the magnitude of the complex 
order parameter cfo(x, y) as well as the magnetic field 
are periodic functions which do not depend on z. The 
magnetic field is taken to have one component, in the 
z direction, say. The equations, in appropriate units· 
are 

W/k)V +A.]2cfo = cfo(1 - Icfo1 2
) (2.1) 

-V x V xA. = Re{cfo*[(i/k)V +A.)cfo}. (2.2) 

We seek solutions to (2.1), (2.2) such that both the 
magnetic field B = (0,0, B) and Icfol 2 are periodic with 
periods defined by lattice vectors t j , j = 1, 2. If such 
a solution exists, then (2.2) leads to the flux quanti­
zation condition9 

(2.3) 

where F is the area of a primitive cell, B is the average 
flux density, and n is an integer. Let t denote either of 
the lattice vectors t1, then to insure (2.3), one has to 
impose the "boundary" conditions 

cfo(r + t) = exp {ikg(r, t)}cfo(r), (2.4) 

A.(r + t) =A.(r) + Vg(r, t), (2.5) 

where g is a smooth, single-valued, real function. lo 

An elementary calculation shows that (2.4), (2.5) imply 
(2.3) for any "gauge" g. We now fix the gauge as 
follows. Since the problem (2.1)-(2.5) is invariant 

9 G. Lasher, Phys. Rev. 140, A523 (1965). 
10 G. Eilenberger, Z. Physik 180, 32 (1964). 
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under the transformation Jt' = Jt + V 'Yj, 1/ = e/>eik'l, 
we may first choose 'Yj so that div Jt = O. Now define 
A by Jt = Hr x B) + A. Then f f curl A = O. An 
elementary calculation shows that by adding a vector 
V'Yj, where 'Yj is an appropriate harmonic function, to 
the potential Jt we make A a periodic vector. Then Jt 
is defined up to an arbitrary constant; hence we may 
further assume that Sf Jt dx dy = O. A possible shift 
in the origin of coordinates then reduces Jt to the form 

Jt = Hr x B) + A, 

where div A = 0; A is periodic and with mean zero. 
The boundary' conditions (2.4)-(2.5) are now fixed 
completely, with the gauge g given by g = Ht x B) . r. 
It is convenient at this point to change variables in the 
GL equations as in Lasher. 9 Let 

(x',i) = (kBj27T)t(X,y); e/>' = (Bj27Tk)-te/>; 

Jt' = (Bj27Tk)-iJt. 

Then a unit cell in the (x', i) system containing one 
quantum of flux [namely, when n = 1 in (2.3)] 
occupies a unit area. The period of the order param­
eter no longer depends on B. Dropping the primes in 
the new coordinate system, we define A by 
Jt = Ao + A, where Ao = 7Tr x h with h a unit 
vector in the z direction. Notice then that curl Ao = 27T 
and that A is periodic with zero mean. The gauge in 
the new coordinates is given by g(r, t) = 17(t x h) • r, 
and the GL equations reduce to 

- [(iV + AO)2 - A]e/> 

= e/> 14>12 + 2A· (iV + Ao)4> + A24> (2.6) 

- V x V x A = lk-2 Re [e/>*(iV +Jt)e/>], (2.7) 

where A. = 217k(B)-1 plays the role of an eigenvalue 
parameter. It is clear that e/> == 0, A = ° is a solutioll 
to (2.6)-(2.7) for any value of A.. This is the "trivial" 
solution corresponding to the normal state. To prove 
the existence of nontrivial small solutions, we define 
c/> = Et1p, a = EA == E(Jt - Ao) and substitute in 
(2.6)-(2.7) to get 

(L - A)1p == {(iV + AO)2 - A}1p = -ej;.(1p, 1p*, a), 

(2.8) 

Ma== -Vx Vxa=ji1p,1p*,a), (2.9) 
where 

(2.10) 

12 = k-2 Re [1p*(iV + Ao)1p] + Ek-2 Re [1p* a1p]. 

(2.11) 

The boundary conditions on 1p, a, derived from Eqs. 

(2.4)-(2.5), are 

(i) 1p(r + t) = exp [i7T(t x h) • r]1p(r) (2.12) 

(ii) a is periodic with zero mean and divergence. 

(2.13) 

For E = 0, (2.8) is solvable for a discrete set of 
positive values for A (see, for example, Brown,ll 
Sec. 4). The smallest possible A, corresponding to 
greatest flux, is Ao = 217, which is associated with one 
or more eigenfunctions 1po depending on lattice 
symmetry. For the important cases of square and 
triangular lattices there exists only one eigenfunc­
tionlO.12 and we assume this in what follows. With 1po 
given, Eq. (2.9) defines a unique vector function ao• 
The triple (Ao, 1po, ao) is a solution to (2.8)-(2.13) for 
the case E = ° and hence still corresponds to a trivial 
solution. We now seek solutions to (2.8)-(2.13) for 
small enough E in the form 

(Ao + €AI (E) , 1po + 1pl(E), ao + alee»~ 
where 1pI is orthogonal to 1po. Projecting (2.8) on the 
subspace E generated by 1po and its orthogonal 
complement E', we obtain 

(1po, A.l (E)1jI - Il(1jI, 1jI*, a» = 0, 

1jIl - ER[A.11jll + 11] = 0, 

(2.14) 

(2.15) 

where ( , ) denotes the scalar product and R is the 
pseudoinverse of (L - 1.0), Equation (2.14) is the 
bifurcation equation and determines 1.1(0) which may 
be seen to be positive. Inverting (2.9), we get 

a - Kji1jl, 1jJ*, a) = 0, (2.16) 

where K is the inverse of M. In order to discuss the 
properties of these inverses (which may be written 
explicitly in terms of eigenfunction expansions 
connected with L, M), we introduce the Sobolev 
spaces Wn(Q) where .0 is the primitive cell. The space 
Wn is the space of scalar or vector distributions whose 
derivatives up to the nth order belong to L 2(.o), and 
thus is a Hilbert space with a natural scalar product. 
Let lIuli n denote the norm of u in Wn ; then we have 

Lemma 1: The operators Rand K are compact 
operators in W" which satisfy the estimates 

IIRllln+2 ~ C1II/II" 
IIKall n+2 ~ C2 lIall n • 

(2.17) 

(2.18) 

where Cl , C2 are constants which. depend only on .0 
and ao• 

11 E. Brown, Phys. Rev. 133, AI038 (1964). 
12 W. Kleiner, L. Roth, and S. Autler. Phys. Rev. 133, A1226 

(1964). 
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Proof" Consider the equation (L - Ao)U = f, where 
Lis defined by (2.8), (2.12), and u andfare orthogonal 
to '!flo . To prove (2.17) we have to estimate u in terms of 
f. Let v = exp iQ(r)u(r) where Q may be chosen to 
make vCr) periodic. Then v satisfies (L' - Ao)V = 
f' =.fexp (iQ), where L' = (iV + VQ + Ao)z. Since 
v is the solution to a uniquely invertible, uniformly 
elliptic equation with regular boundary conditions, 
the inequality Ilvlln+2 ~ C Ilf'lln follows from standard 
estimates (see, for example, Agmon, Douglis, and 
Nirenberg13). The same inequality, with a different 
constant depending on Q, holds therefore for u, 
which proves (2.17). A similar, but simpler, argument 
proves (2.18). 

Now we consider the system of equations (2.14)­
(2.16) for the unknown (A, '!fl1' a) where both '!fl1 and 
a belong to W3(O). Then we have 

Theorem 2: There exists an EO> ° such that for 
E ~ EO the system (2.8)-(2.13) has a unique non­
trivial solution. 

Proof" From the discussion preceding Lemma 1, it 
is sufficient to discuss the system (2.14)-(2.16). Let u 
denote the vector u = (A, '!fl1' a) and consider the left 
side of (2.14)-(2.16) as a nonlinear map N(u, E) of the 
space B = I @ W3(O) @ W 3(O), where I denotes the 
real numbers, into itself. Since the norm in W3 
dominates the maximum norm by Sobolev's im­
bedding lemma14 and the nonlinear functions f1' fz 
are smooth-in fact, analytic-in the maximum 
norm, it follows that the map N is bounded and 
continuously differentiable in Band E. Since Uo = 
01(0),0, ao) is the unique solution of N[u,O) = 0, 
the above theorem becomes a consequence of the 
implicit function theorem if the Frechet derivative D 
of N at Uo is nonsingular. A simple calculation shows 
that D has the same form asJin Sec. 1 [Eq. (1.11)) and 
therefore is invertible, which proves the theorem. 

Remarks: (i) The standard methods for proving the 
implicit function theorem in Banach spaces (see 
Ehrmann8 or Schwartz15) may be used to give different 
perturbation procedures for calculating the solution 
(A, cp, A) in terms of the parameter E. The Newton 
method (Schwartz15), for example, gives a quadrati­
cally convergent procedure. 

13 S. Agmon, A. Douglis, and L. Nirenberg, Commun. Pure 
Appl. Math. 17, 35 (1964). 

14 N. Dunford and J. T. Schwartz, Linear Operators, Part II 
(Interscience Publishers, Inc., New York, 1963), Chap. XIV, p. 
1686. 

15 J. T. Schwartz, "Nonlinear Functional Analysis," Courant 
Institute of Mathematical Sciences Lecture Notes, New York 
(1965). 

(ii) The method used in Lasher9 is based on a 
formal expansion in terms of IX = (27T)-1(A - Ao). 
This procedure may be justified as follows: for small 
enough E, A is an increasing function of E since 
A1(0) > O. Hence, for some b > 0 and for E ~ b, 
we may consider E as a unique function of IX. Then 
'!fl, a become functions of IX also, and any convergent 
procedure in terms of E produces a similar one in 
terms of IX. However, the IX region of convergence may 
be smaller than the E region. 

(iii) Equation (2.8), for E = 0, has solutions for a 
discrete set of eigenvalues An -- 00. Using the same 
method of Theorem 2, it is possible to prove the 
existence of nontrivial solutions to the GL equations 
for values of A near (and slightly higher than) these 
eigenvalues. 

3. EXISTENCE OF THE MIXED 
STATE FOR A > Ao 

In this section we use the direct methods of calculus 
of variations to prove the existence of nontrivial 
solutions to the GL equations (2.6)-(2.7) for all 
A> Ao = 27T. This means that the mixed vortex state 
exists for all values of the flux below the critical 
flux jj = k. As is well-known,5 Eqs. (2.6)-(2.7) are 
the Euler equations for the energy 

E = f {(iV + .,t)'!fl' (-iV + .,t)'!fl* 
+ f( '!fl, '!fl*, A) + 2k2\V X .,t\2} dx dy, (3.1) 

wheref= t \'!fl\4 - A \'!fl\z. The integration in (3.1) is 
over a fixed unit cell independent of A because of the 
normalizations given in Sec. 2. To define the variational 
problem precisely we have to specify the admissible 
functions. As in Sec. 2 we first define A =.,t - 7Tr x h. 
Consider then smooth functions u =. ('!fl, A) satisfying 
conditions (2.12)-(2.13). By completing these functions 
with respect to the norm 

lIull z = f {lulZ + \VuIZ
} dx dy, 

where Vu denotes all the first-order derivatives of 
'!fl, A, we get a closed subspace H of the Hilbert space 
W1(O). The variational problem E is then defined in 
H, and our object is to prove that if A > 27T, there 
exists a nontrivial vector V(A) E H which lies in the 
interior of some bounded region of H and minimizes 
E. Then v will be a variational solution to the GL 
equations corresponding to the mixed state. First we 
prove 

Lemma 2: The free energy E(u) -- 00 as lIull-- 00 

for all admissible u. 
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Proof: Using V· A = 0, we rewrite (3.1) in the 
form 

E - 8k2
7T

2P = J {IVV'12 - 21m (V'*A· VV') + IV'AI2 

+ I(V', A) + 2k21V x A12} dx dy, (3.2) 

where P is the area of the unit cell and where we have 
used the fact that the average of V x A is zero. If 
lIull - 00, then at least one of the L2 norms of V', A, 
VV' or VA, which we denote by II 112' must approach 
infinity. We check the behavior of E in all possible 
cases. First, if 11V'112 - 00, then, for any fixed A, 
Ilf(V', A)112 - 00 by the Schwarz inequality and hence, 
using (3.1), E - 00. We may henceforth assume 
11V'112 bounded. Using Green's formula, the periodicity 
of A and div A = 0, we find IIV x Allz = IIVAI12' 
Hence, if IIVAI12- 00, the last term in (3.1) tends to 
infinity by the Schwarz inequality. Since the first two 
terms are bounded from below, because 11V'112 is 
bounded, E must approach infinity. Therefore, we 
may assume now that IIVAII2 is bounded also. Because 
of the periodicity conditions (2.13), IIAllz is also 
bounded. By Sobolev's imbedding lemma, A E L1' for 
allp < 00. WenowdiscussthecasewhenIIVV'llz- 00. 

It is clearly sufficient to restrict attention to the case 
when V' E L4 for otherwise (3.1) shows that E = 00. 

Then, using the Schwarz inequality twice on the 
second term in (3.2), we find 

E ~ IIV'V'II~ - CI 11V'V'llz - Cz, (3.3) 

where C1> C2 are some finite constants. Hence, E - 00 

in this case also, and the lemma is proved. 

Let Br denote the ball of radius r around the origin 
in H. Then, for a given r, we have 

Lemma 3: The functional E is lower semicon­
tinuous on Br with respect to weak convergence in H. 

Proof' Consider the form (3.2) for E. The third and 
fourth terms are continuous in the weak topology. 
Consider, for example, the fourth term. Let V' .. 
converge weakly to V'. Then the H norms of V', V' .. are 
bounded. Hence, a subsequence of the V' .. , call it V' .. 
again, converges to V' in L2 by Rellich's lemma.16 

11 See, for example, Ref. 14, pp. 1692-1693. 

Hence, if 4> .. = IV' .. I, we have 

J 14>~ - 4>41 dx dy = J I( 4> .. - 4»Ps( 4> .. , 4»1 dx dy, 

(3.4) 

where P a is a cubic in 4> .. , 4>. By Schwarz, the right 
side of (3.4) tends to zero if the Lz norm of Pa is 
bounded. But this is an immediate consequence of the 
boundedness of the H norm of V' and Sobolev's 
imbedding lemma. A similar argument applies to the 
third term. The remaining terms in the integrand of 
(3.2) are, for fixed V', A, convex in the first derivatives 
of the vector u = (V', A). Bya theorem of MorreyI7 
the integrals of these terms are then lower semi­
continuous, which completes the proof. Now we 
state the main result. 

Theorem 3: There exists at least one nontrivial 
variational solution of the GL equations (2.6)-(2.7) 
for all A > Ao 

Proof" In view of Lemma 3, E(u) achieves its 
minimum on every ball Br because such a ball is 
weakly compact. By Lemma 2 we can choose r large 
enough so that this minimum, call it v, does not occur 
on the boundary of Br • Then v is a variational solution 
of the GL equations. It is then sufficient to check that 
v ¥= O. We calculate the second variation of E at 
u = 0; i.e., at V' = 0, .tf. = Ao, in the "direction" 
tJu = (bV', tJA). If L denotes the operator 

(iV + Ao) • (-iV + Ao), 

this variation is 

bZE = (tJV', (L - A)bV') + 2kZ(bA, -AbA). (3.5) 

Choosing bA = 0 and bV' to be the eigenfunction of L 
corresponding to the lowest eigenvalue A = Ao, we 
find that the second variation in this direction is 
negative for all A > Ao. Hence, u = 0 is not even a 
local minimum for E and the theorem is proved. 
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For potentials more singular than the inverse square at the origin and with complex strength, the 
nature of the solutions to the Schrodinger equation is investigated. The difficulties occurring with 
attractive real potentials in the three-dimensional equation are discussed, and it is shown that no solu­
tions exist in a domain including the origin. For complex or repulsive singular potentials with radial 
form varying as the inverse fourth or sixth power, a relatively simple series solution exists. This is also 
true for the singular Yukawa with inverse fourth power. These series are shown to be asymptotic by 
means of general theorems from the theory of ordinary differential equations. Other inverse powers have 
much more complicated solutions. In the Dirac case, all inverse powers and singular Yukawa forms 
have asymptotic series solutions, and the series is given explicitly for the singular powers. A form of the 
S-wave scattering length for the singular inverse fourth-power Yukawa V = g 2e-i t>.e-W /r" is derived 
which is valid for small values of ftg. 

I. INTRODUCTION 

SINCE the pioneering paper of Casel many years 
ago, an extensive literature has developed on the 

subject of singular potentials. By singular potentials 
it is meant those potentials which have the property 

(1) 

although sometimes the inverse-square potential is 
also regarded as singular. This particular potential2 

has a number of properties which set it apart from 
those characterized by Eq. (1), but nevertheless it does 
behave abnormally in enough ways to exclude it from 
being classified as a regular potential. All singular 
potentials are assumed to vanish at infinity fast enough 
to cause no trouble with ordinary scattering theory. 
This usually means they vanish faster than r-3 at 
infinity. 3 

The investigation of singular potentials covers a 
number of areas of both physical and mathematical 
interest. The literature in the last few years is too 
voluminous to reference here completely, but some of 
the important papers in each area can be mentioned. 
Vogt and Wannier4 made early use of the siiIgular 
potential behaving as r-4 in the study of gaseous ions 
moving through a gas whose molecules are not too 
large. 

Tiktopoulous6 and Kouris6 have used the r-2 and 
r-4 potentials, respectively, with energy-dependent 

1 K. M. Case, Phys. Rev. 80, 797 (1950). 
• P. M. Morse and H. Feshbach, Methods of Theoretical Physics 

(McGraw-Hill Book Co., Inc., New York, 1953), Chap. 5. 
a We want the scattering lengths, forward scattering amplitude, 

and total cross section to exist. See, for example, L. Landau and 
E. Lifshitz, Quantum Mechanics (Pergamon Press, Inc., London, 
1958), Chap. 14. See also Ref. 21. 

, E. Vogt and G. Wannier, Phys. Rev. 95, 1190 (1954) 
6 G. Tiktopoulous, Phys. Rev. 138, B1550 (1965). 
8 C. B. Kouris, Nuovo Cimento 44, 598 (1966). 

complex strengths to investigate the elastic differential 
cross sections for high energy p-p and p-7T scattering. 
Their models, patterned somewhat after the optical 
model of Serber,7 give reasonable results. Quite 
recently, Spector and Chands have used the general 
form ,-n (n > 3) with complex energy-independent 
strength to describe the KN and KN low-energy 
scattering lengths. Again the results are satis­
factory. 

On the theoretical side, early work was stimulated 
by a paper of Predazzi and Regge9 and by the weak 
field theory papers of Feinberg and Pais.lo The former 
authors conjectured that, inasmuch as the real world 
probably involved rather singular interactions, the 
best way to investigate Regge poles in field theory 
(assuming that it describes the real world) was to 
investigate the appearance of Regge poles in the 
scattering amplitudes of singular potentials. Work by 
Jaksic and Limicll and by Aly and Miillerl2 was car­
ried out along this line. 

The Feinberg and Pais papers introduced the idea 
of peratization, which is a rather complicated pro­
cedure for summing divergent terms in weak field 
theory. Tiktopoulous and Treimanl3 and Khuri and 
Pais14 shortly thereafter applied similar procedures to 
nonrelativistic singular potential theory in order to 
calculate the scattering lengths for singular potentials. 
These scattering lengths cannot be calculated in the 
usual Born series, since every term diverges. so that a 

7 R. Serber, Phys. Rev. Letters 10, 357 (1963). 
8 R. Spector and Ramesh Chand (to be published). 
9 E. Predazzi and T. Regge, Nuovo Cimento 24, 518 (1962). 
10 G.Feinberg and A. Pais, Phys. Rev. 131, 724 (1963); 133. 

B477 (1964). 
11 B. JaUic and N. Limic, J. Math. Phys. 7, 88 (1966). 
12 H. Aly and H. Muller,.]. Math. Phys. 7,1 (1966). 
13 G. Tiktopoulous and S. Treiman, Phys. Rev. 134, B844 (1964). 
14 N. Khuri and A. Pais, Rev. Mod. Phys. 36, 590 (1964). 
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special technique, called peratization, is utilized. A 
great number of workers have investigated peratiza­
tion for particular potentials. Among these are 
Aly et al.,ls Spector,16 WU,17 and Calogero,18 

Other workers, and in particular Cornille,19 have 
been concerned with more general properties of 
singular potentials: such as when the peratization 
procedure can be expected to work in the general case; 
how the asymptotic high-energy scattering amplitudes 
behave20 ; what the effective range low-energy approxi­
mations look Iike21 ; what the formal expressions for 
the S matrix are22, and the determination of various 
approximations to the scattering amplitudes.23 

Despite the extensive literature on singular poten­
tials, extremely few papers have been devoted to the 
actual solution of the nonrelativistic SchrOdinger 
equation or the Dirac equation for singular potentials. 
Wannier,24 Spector,25 and Aly and MiiHer12 are 
among the very few papers devoted to this subject, 
and they all deal with solutions to the radial Schro­
dinger equation for r-4 at arbitrary energy and angular 
momentum. The reason for this is that the r-4 potential 
is the only one that can be solved in terms of known 
functions for nonzero energy. Surprisingly, Plesset26 

did make a cursory study of singular potentials in the 
Dirac equation 35 years ago. 

In this paper we intend to present an investigation 
and discussion of the solutions to the three-dimen­
sional Schrodinger equation, the radial SchrOdinger 
eqnation, and the Dirac equation. In Sec. II the diffi­
culties caused by attractive real singular potentials are 
investigated in the three-dimensional equation. In 

. Sec. III the general properties of the radial equation 
sol.utions are determined. In Sec. IV a more general 
class of singular potentials, namely the singular 
Yukawa forms, are discussed; and in Sec. V formal 
solutions are given to the Dirac equation. In the 
Appendix we derive an approximate form for the 
S-wave scattering length resulting from the singular 
Yukawa potential which varies as e-,.r/r4• 

15 H. Aly, Riazuddin, and A. Zimerman, Phys. Rev. 136, BI174 
(1964). 

16 R. Spector, J. Math. Phys. 7, 2103 (1966). 
17 T. T. WU, Phys. Rev. 136, B1l76 (1964). 
18 F. Calogero, Phys. Rev. 139, B602 (1965). 
19 H. CorniIle, Nuovo Cimento 38, 1243 (1965); 39, 557 (1965); 

43, 786 (1966) . 
•• E. Del Giudice and E. Gaizenati, Nuovo Cimento 38, 443 

(1965); N. Dombey, ibid. 37, 1741 (1965). 
31 T. O'Malley, L. Spruch, and L. Rosenberg, J. Math. Phys. 2, 

491 (1961). 
2! R. Spector, Nuovo Cimento 45, 924 (1966). 
os F. Calogero, Nuovo Cimento 27, 261 (1963). See also 

Ref. 27. 
24 G. Wannier, Quart. Appl. Math. 11, 33 (1953). 
•• R. Spector, J. Math. Phys. 5, 1185 (1965). 
o. M. Plesset, Phys. Rev. 41, 278 (1932). 

II. THREE-DIMENSIONAL NONRELATIVISTIC 
SCHRODINGER EQUATION 

In nonrelativistic quantum mechanics, a spinless 
particle of energy k 2 moving in a potential VCr) has a 
wavefunction satisfying 

V21p(r) + [k2 - V(r)]1p(r) = 0, (2) 

where V2 is the Laplacian operator in three dimen­
sions and our units are such that Ii = 2m = 1. The 
conventional separation into partial waves (for a 
spherically symmetric potential) produces a one­
dimensional radial equation for the lth partial wave of 

d
2

cp + [k2 _ 1(1 + 1) _ V(r)]cp = 0, (3) 
dr2 r2 

where cp = r1p. Since singular potentials have stronger 
behavior at the origin than the angular momentum, it 
is easily seen from Eq. (3) that for many purposes it is 
sufficient to discuss only the zero-energy S-wave 
wavefunction. We now fix the form of out potential, 
in this part of the paper, to be 

2 -iA 

VCr) = ~ g > 0, ° S ~ S 7T, n > 2. (4) rn 

Notice that when ~ = 0, the potential is repulsive, 
and when ~ = 7T, it is attractive. The restricted range 
on ~ is necessary to keep 1m V S ° in accordance with 
the usual need of scattering theory to ensure that the 
scattering causes a loss of flux in the elastic channel 
rather than an increase. Although we admit n > 2 
mathematically, we usually require n > 3 for the 
physical reasons mentioned earlier . 

The solutions to Eq. (3), with potential Eq. (4) 
and for k 2 = I = 0, are easily obtained from the 
known solutions27 for ~ = 0. We have 

cp(r) = rtKp(2pge-iA/2r-l/(2P» p = ~2' (5) 
n-

where Kp(x) is the modified Bessel function of the 
third kind with complex argument.28 

The behavior near r = ° for any k2 and I is given by 
Eq. (5), as we mentioned above. Thus we obtain 

lim cp(r) ,...., rn/4 exp (_ ~ e-iA/2rl-(nI2l) 
r->O n - 2 

any k 2
, 1. (6) 

There is, of course, a second solution to Eq. (3) 
which exhibits a plus sign in the exponential in Eq. 
(6); but as r -)0 0, only the form Eq. (6) makes cp 

27 F. Calogero, Phys. Rev. 135, B693 (1964). 
28 G. N. Watson, Theory of Bessel Functions (Cambridge Uni­

versity Press, London, 1958), 2nd ed. 
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vanish if 1:1 < 71'. When 1:1 = 71', cf> does not vanish 
exponentially fast, but rather much more slowly, as 
some positive power of r. In this case the second 
solution also vanishes, causing a long recognized 
quandry, first observed by Case,1 concerning the 
choice of the correct linear combination of wave­
functions at the origin. As we shall see below, this 
quandry in fact has no meaning. 

In order to investigate the case of 1:1 = 71' (attractive 
potential) more closely, we restrict ourselves for the 
present to n = 4 for k 2 = I = 0, where the two exact 
solutions for cf> are 

-1 
cf> = re±iur , (7) 

and Eq. (2) becomes 

(8) 

Before looking at Eqs. (7) and (8), we recall that 
Laplace's equation 

(9) 

is not satisfied by the spherically symmetric 1jJ = Ifr 
because V'2(r-1) = -41Tb(r), where (J(r) is the three­
dimensional Dirac delta function. Yet the associated 
radial function cf>(r) = 1 does satisfy the radial 
equation cf>" = O. 

In fact, 1jJ = l/r even appears to satisfy the three­
dimensional equation when written out in spherically 
symmetric form 

2 021jJ 2 01jJ 
V' 1jJ = - + - - = O. (10) 

or2 r or 

Equation (10) is satisfied by 1jJ = I/r at all points 
except r = 0, and it is tempting to say that IJr is a 
solution there, too, in the sense of taking some suit­
ably defined smooth limit as r ---+ O. 

Precisely what, then, is meant by saying that 1jJ(r) 
is a solution to Eq. (8) or Eq. (9)? A function 1jJ(r) is 
said to be a solution to Eq. (8) [or Eq. (9) in an 
obvious simplification of what follows below] if the 
following expression is valid: 

fff [1jJ(r)V'2u(r) + !: u(r)1jJ(r) ] dV = 0, (11) 

ALL SPACE 

where u(r) is any continuous function with compact 
support and continuous first and second derivatives.29 

Any 1jJ which satisfies the condition of Eq. (11) is said 
to be a solution in the weak sense,30 although it may 

2' Roughly, a function with compact support must vanish outside 
of some bounded domain. The classic example of an infinitely 
differentiable function with compact support is f(r) = exp [-1/ 
(1 - r)], 0 ~ r ~ 1 ;f(r) = 0, r:;:: 1. 

80 See L. Hiirmander, Linear Partial Differential Operators 
(Springer-Vedag, Berlin, 1963), especially Chap. IV. 

(but not necessarily) be a solution in the strong sense 
as well, i.e., satisfying Eq. (8) at all points in the 
domain 0 ~ r ~ CIJ with the conventional differential 
form for V'2, the radial part of which is given in Eq. 
(10). 

The expression Eq. (11) is obtained from 

Iff u(r) [ V'21jJ(r) + ~: 1jJ(r) ] dV (12) 

ALL SPACE 

by integration by parts, utilizing the properties of 
u(r), or just by recalling directly that the V'2 operator is 
self-adjoint. This conversion from Eq. (12) to Eq. (11) 
is necessary in order to allow V'2 to operate on u(r) 
where V'2 may be expressed in its conventional differen­
tial operator form because u(r) is well-behaved every­
where. On the other hand, when V'2 operates on 1jJ(r), 
as it does in Eq. (12), its properties are uncertain if 
1jJ(r) or if its derivatives fail to exist anywhere. For 
instance, this occurs at the origin for 1jJ = l/r. 

If now we look at the spherically symmetric solu­
tions given in Eq. (7) and use Eq. (II) [after integrating 
out the angles in Eq. (12) first], we require that the 
integral 

500'0 e±iur-
l 

(rV' + 2ru' + !: u) dr (13) 

be zero if Eq. (7) is to be a solution to Eq. (8). The u 
in Eq. (13) is now a radial function only, and differenti­
ation is with respect to r. Rewriting Eq. (13) we have 

LX) [(r2e±iUr -lU')' ± ige±iUr-
l

u' + ~: uJ dr 

= r2e±iur-
l

u' I~ ± ig L<Xl(e±iUr-
l

u)' dr 

. -1 

= lim ± igu(r)e±,gr ¥- 0 (if u(O) ¥- 0), (14) 
r-->O 

where both integrated terms vanish at infinity because 
u has compact support. Thus even though 

satisfies the radial equation, the three-dimensional 
wavefunction 1jJ = cf>lr does not satisfy the three­
dimensional equation. Such a state of affairs is noted 
briefly by Newton,31 although he uses the less rigorous 
plausibility argument that V'2, operating on certain 
general functions of r-1 , produces delta-function 
terms. It is necessary, however, to show (as we have 
done above) that not only are these terms present but 
that they actually affect the solution. This must also 
be done in such a way as to bypass the actual use of the 

31 R. G. Newton, Scattering Theory of Waves and Particle 
(McGraw-Hill Book Co., Inc., New York, 1966), p. 390 ff. 
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delta function. In fact, it can be shown with a little 
effort that, by using a particular representation of the 
delta function, the integral 

must vanish, which would lead to a result inconsistent 
with Eq. (14). This may also be seen less rigorously by 
using the property of t5(r) that 

roo e±igr -1u(r)t5(r) dr = lim u(r)e±iUr -1 o;!: 0. 
Jo r-+O 

(See the remarks below about the correct form of \72.) 
Since any solution of Eq. (8) must be equal to 4>lr 

with 4> given by Eq. (7) when r > 0, this means that 
there are no (continuous) solutions to Eq. (8) at alI.32 

The quandry first mentioned by Case, and referred to 
earlier, has no meaning. 

A number of comments are in order about this 
result. First, the limit in expression (14) failed to exist 
because we took ~ = TT. By repeating the process 
leading to Eq. (14) with ~ < TT, it is easily seen that 
the limit is zero. Thus, so long as ~ < TT, there is a 
three-dimensional solution in the weak sense-which 
is also a strong solution, of course. 

Second, since the dangerous behavior of \72 occurs 
only at the origin, our results obviously hold even if 
k 2 and I are not zero. The proof, analogous to that 
above, would no longer be so simple, but fortunately 
it is not necessary. 

Third, the same results would also hold for n > 4, 
as can be seen by using the expression (6) and making 
use of the fact that, when operating on a radial 
function containing r-1 , we may write the Laplacian 
operator as33 

\7 2 -+ ~ + ~ ~ + t5(r) ~ . 
or2 r Or Or 

Thus, we are left with a sound mathematical 
solution over alI space if ~ < TT, but also with 
solutions for ~ = TT under certain circumstances. 
For instance, in a problem where the singular potential 
is cut off at some point R > 0, the problem is welI­
defined, and by matching interior (r < R) and exterior 
(r > R) solutions, consistent results may be obtained. 

A simple example might be the problem of finding 

81 Though some form of distribution might be a solution, it is 
unlikely because, in the similar case of Laplace's equation, it is 
known that no such solutions exist. This is essentially the import of 
Horrnander's Theorems 4.1.4 and 4.1.5, which are extensions of 
Weyl's lemma. See Ref. 30, p. 96, 100, 101. In any case, in 
quantum mechanics we accept only continuous wavefunctions. 

aa I am indebted to Professor L. D. Favro for pointing this out to 
me. 

the S-wave scattering length for 

VCr) = 0, r < R, 

g2 
VCr) = - -, r > R. 

r4 

The interior solution is 4> = r, and the exterior is 

By continuity of 4> and 4>' at r = R, it is easy to 
determine that the scattering length for S waves is 

lim - t5o(k) = a = g tan (gIR,) (15) 
k-+O k 

and at glR = (2m + IHTT, bound states occur. 
Another case where ~ = TT solutions may be used 

is in the one-dimensional problem since the radial 
equation is then exact, and is not the reduction of a 
three-dimensional equation. Finally, it is possible to 
make these nonsolutions into correct three-dimen­
sional solutions if a term is added to the potential 
which contains a t5(r) multiplied by just the right 
function to cancel out the delta-function term caused 
by \72 in Eq. (11). This integral would then be zero by 
construction. This last point has been mentioned in 
a footnote by Newton.31 

III. RADIAL SCHR()DINGER EQUATION 

What can be said of the solutions to Eq. (3) now 
that we know the circumstances under which it has 
meaning? We have already seen that the case n = 4 
is rather special in that it can be solved exactly (for 
k2 = I = 0) with a very simple function, rather than 
with the Bessel functions necessary for general n. 
Even if k 2 and I do not vanish, this potential has an 
exact solution while the other n's do not,12,24.25 In this 
special case, the solutions are the modified Mathieu 
functions and are rather complicated due both to the 
general nature of Mathieu functions and the need to 
use complex parameters in some of the solutions. 

The reasons for this unusual behavior, which is 
special to n = 4, will be seen below to follow simply 
from the general properties of the equation. We also 
see that n = 6 has some properties that set it apart 
from other values of n. In the material that follows, we 
foIl ow closely the treatment of ordinary differential 
equations as given by Coddington and Levinson,34 
hereafter referred to as CL. 

It is convenient to put z = I/r and transform the 

34 E. A. Coddington and N. Levinson, Theory of Ordinary 
Differential Equations (McGraw-Hill Book Co., Inc., New York, 
1955), especially Chap. 5. 
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singularity in Eq. (3) to infinity so that we have 

d
2

cf> + ~ dcf> + (k2 _ 1(1 + 1) _ V(Z-I») cf> = O. (16) 
dz2 z dz Z4 Z2 Z4 

Then we write this as a second-order system: 

Y~ = Y2' 

Y~ = _[k2 _ 1(1 + 1) _ V(Z-I)]Yl _ 2Y2, (17) 
Z4 Z2 Z4 Z 

where YI = cf>, Y2 = cf>'. Considering Yl and Y2 as 
components of a two-dimensional vector, we write 

y = z"A(z)y, (18) 

where A(z) is a 2 X 2 matrix, each element of which is 
analytical in the neighborhood of z = 00, A ( (0) ¥: 0 
(meaning that not every element of A vanishes), and 
ex ~ O. 

In particular, for the potential Eq. (4) with integral 
n, 

ex = n - 4, 

A(z) 

= [_k2Z-n + 1(1 : l)z-n+2 + g2e-il>. 

z4--n ] 

_2z-n+3 ' 

(19) 

A(oo) = [ O. ~40·nJ if n ~ 4, 
g2e-·l>. 

and 

ex = 0, 

A(z) = [ 0 . 
_k2z-4 + l(1 + l)z-2 + g2e-·Az-l 

A( 00) = [~ ~J if n = 3. 

Singularities of this type, with ex ~ 0, are known as 
singularities of the second kind and are enormously 
more difficult to analyze theoretically than those of the 
first kind. (Fuchian singularities, such as those that 
develop in the radial Schrodinger equation for regular 
potentials, are examples of singularities of the first 
kind.) 

The nature of the solutions to the original Eqs. 
(3) or (16) breaks into two types, depending on whether 
the eigenvalues of A( (0) are degenerate or distinct. 
When they are distinct, it is possible to express the 
general solution to Eq. (3) as (we use here a special 
case of Theorem 2.1, Chap. 5 in CL) 

where M is a 2 x 2 diagonal matrix of complex 
constants and Q is a 2 x 2 matrix polynomial 

-,,-1 -IX 

Q = _r _ Qo + ~ Q1 + ... + r-1Q", 
0(+1 0( 

with the Qi complex 2 X 2 diagonal matrices and 

[
AI OJ 

Qo = 0 A
2

' 

with Al and 1.2 the distinct eigenvalues of A ( 00). In 
Eq. (20) ct> is the 2 x 2 solution matrix, the first 
column being the first solution for the pair (Yl , Y2) and 
the second column being the other independent solu­
tion for (Y1 ,Y2)' 

From Eq. (19) we see that only for n = 4 does 
A ( 00) have distinct eigenvalues and these are 

Al = ge-iA/2, A2 = _ ge-iA/2, 

and we have 

ge-i
l1/2 [1 OJ Q=- . 

r 0-1 

The quantity r-M in (20) is defined as 

co ( I)" 
r-M = e-M1nr = I-=-- (Mlnr)", 

s~o s! 
so that for diagonal M, 

[
r-

m1 
0 ] 

r-M = 
o r-ms 

for some two constants m1 and m2 • The quantity eQ 

behaves similarly since Q is diagonal. Our two 
solutions are now 

Yf = cf>± = r exp (±ge-i l>./2r-l{it mrm]. (21) 

where we know from Eq. (6) that m1 = m2 = -1. 
The interesting feature of the power series appearing 
in Eq. (21) is that it does not converge for any r, but 
is an asymptotic series. This is an unusual phenomenon 
for physicists who normally associate asymptotic series 
with behavior at infinity. However; as proved in 
Theorem 4.1 of Chap. 5 of CL, there do exi~t actual 
solutions to Eq. (3) for which the so-called formal 
solutions of Eq. (21) are their asymptotic expansions 
in the sense that 

lim I cf>~ctual - r exp (±ge-i l1/2r-l)1
1 
P mrm I 

r-+O m=O 

= O[r exp (±ge-il>./2r-l)rN]. 

It is possible to obtain the result (21) in a consider­
ably less sophisticated manner by putting 

cf>± := r exp (±ge-iA/Z,-1)x(r) 
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and inserting this into Eq. (3) to obtain 

X" + [~ + ge-
i
l!/2Jx' + [k2 + 1(1 + l)Jx = O. (22) 

r r2 r2 

It is easy to see that a trial function of the form 
00 

x(r) = .L P mrm (23) 
m=O 

will formally solve Eq. (22), but it is not at all apparent 
that this series will be asymptotic rather than conver­
gent. We note here the interesting point that if one 
equates the solution (21) with the solution given in 
terms of the Mathieu function as specified in Ref. 25, 
then one has automatically derived one of the lesser 
known asymptotic series for the Mathieu function. a5 

The asymptotic nature of the solution causes 
certain difficulties in any attempt to integrate the ,-4 
potential (or any other for that matter) by numerical 
methods.a6 

We turn now to the case where the eigenvalues of 
A( (0) are degenerate, or, in other words, n oF 4. 
Even though asymptotic solutions still exist and are 
given in general form by Theorem 6.1 of Chap. 5 
of CL, they are of greatly increased complexity 
compared with Eq. (21). The solution matrix <J) 

involves the matrix product of two factors. One of 
these is the exponentiation of a nondiagonal matrix, 
every element of which is a finite power series in a 
negative fractional power of r. The other factor is 
a matrix, every element of which is a product of a 
power of r times a finite power series in In (r-1). In 
this power series every coefficient of each power of 
In (r1) is itself an infinite power series in a fractional 
power of r. Again a theorem exists relating this formal 
asymptotic solution to an actual solution. 

It might appear that the complexity here is so great 
that nothing further can be done. However, n ::;= 6 
presents an interesting exception. The involved form 
for <J) just mentioned could simplify by accident in a 
given instance and this is precisely what happens for 
n = 6. By putting r = t1 and z = r 1 , we, may write 
Eq. (18) as 

Y~ = Y2' 

, (k2 1([ + 1) 1 2 -il! (n/21-a) 3 Y2 = - - - - 4g e z Yl - - Y2' 
4z3 4Z2 2z 

a. In particular, rather than the usual asymptotic series in inverse 
powers of cosh x, for large x, which is commonly given in the 
literature, the series derived is a power series in r". See N. W. 
McLachlan, Theory and Applications of Mathieu Functions (Oxford 
University Press, Oxford, 1947). 

38 Near the origin, Eq. (22) involves large terms which diverge at 
r = O. These terms analytically cancel, but they cause great trouble 
when numerical methods are used. Because the solution (21) is only 
asymptotic, it cannot be used satisfactorily to obtain a numerical 
start far enough away from the origin to render the divergent type 
terms harmless. 

Thus, for n = 6, 

IX = 0, 

_1~], 
2z 

(24) 

A(oo) = [ O. 1J. 
ig2e-zA 0 

This is just the form of A( (0) required for the simpler 
type of solution in Eq. (20). However, in this case the 
argument of the solution is not r, but r2. The reason 
we could not· obtain this solution before is that 
Theorem 2.1 in CL gives sufficient, but not necessary, 
conditions on A(z) in order that the solution be of the 
form of Eq. (20). 

If we make the general substitution 

cP±(r) = rnl4 exp [± ~ e-i A/2r1-{n/ 2l]x(r), (25) 
n-2 

and then put r = t2j(n-2), we can obtain the general 
equation corresponding to Eq. (22), which is 

Xl! + [~ + _4_ ge-iM2t-2]i 
t n - 2 

+ (n ~ 2Y[ k 2
t'i - ~ ]x = 0, (26) 

where 

A = 1(1 + 1) + ~(~ - 1) 8 - 2n 
and 15=--. 

n-2 
We see that 15 is an integer only for n = 4 or 6, and a 
trial solution of the form of Eq. (23) will produce a 
formal solution which, in fact, is not convergent. 

Even though for all other n awkward solutions 
occur, it is always possible to obtain the first two 
terms of X in Eq. (25).· From Eq. (26) we easily find 
that, as t -+ 0, 

A 
X( t) ""' 1 + etA

/
2
t 

g(n - 2) 

""' 1 + A ei 1J.l2r(n-2)/2. 

g(n - 2) 
Unfortunately, the next terms are likely to be exceed­
ingly complex, as indicated above. Equation (26) 
indicates that no other n will produce a formal power 
series solution. 

IV. SINGULAR YUKAWA POTENTIALS 

Potentials of the form 

(27) 



                                                                                                                                    

WA VEFUNCTION FOR SINGULAR POTENTIALS 2363 

present more difficult problems since even at zero 
energy the solutions are not known. However, 
by repeating the analysis in Sec. III, we see that 
A ( (0) is unaltered by the presence of e-ur

• Hence it 
is also possible to solve the singular fourth inverse­
power Yukawa by an asymptotic power series. Such 
is not the case for n = 6, because the presence of 
exp (-pz-!) in A(z) causes it to lose its analytic prop­
erties in the neighborhood of z = 00. 

For any n, however, it is possible to see that the 
behavior near the origin is 

!~n: c?± ""' V-i(r) exp [ ± f V!(r) dr 1 (28) 

Note that, because of the rapid oscillation of the 
imaginary part of the exponent in Eq. (28), the radial 
behavior of the integrand cannot be replaced by 
r-nf2. As r -+ 0, V-i(r) may be replaced by r nf4. For 
small enough r, it might be supposed that V(r) could 
be represented by 

g2e-i4 pg2e-i4 
VCr) R:; -- - -- • 

rn r n- l ' 

and then the ,-n+1 term neglected in the limit r -+ O. 
This cannot be done for the reason just mentioned. 
This nonanalytic type of behavior with respect to the 
r-n+l term was first noted by Predazzi and Regge9 

for n = 4. 
For small enough values of pg and n = 4, it is 

possible to approximate the S-wave scattering length 
by a Green's function method and then find the correc­
tion due to p. We give the details in the Appendix 
which lead to the result (for fl. < 77') 

a = ge-iM2[t + !e-i4f2.(pg) In (,Ltg)]. (29) 

V. THE DIRAC EQUATION 

As mentioned in the Introduction, Plesset26 long 
ago sketched the solution for the radial Dirac equation 
when the potential was of the form of Eq. (4). It 
was not until some time later that Rose and Newton37 

pointed out that, as in the Schrodinger case, the 
wavefunctions were not usable for physical prob­
lems. This time both attractive and repulsive real poten­
tials are excluded and for the different reason that 
unitarity is violated. We refer to their paper for the 
detailed statement and proof. 

For complex strengths, or for the other uses indi­
cated in Sec. II, we give the power series solutions to 
the two radial Dirac equations. (These were not given 
by Plesset.) First we write the two equations for F = rf 
and G = rg, where f and g are the two standard 

87 M. E. Rose and R. R. Newton, Phys. Rev. 82,470 (1951). 

radial Dirac functions for spherically symmetric 
potentials38 : 

G' = - !l. G + (ell - V(r»F, ell = E + mc2
, 

r 

F' = !l. F - (el2 - V(r»G, 
r 

Putting r = z-1, we obtain 

or 
y' = zIXA(z)y, 

with 

(30) 

(31) 

-elIZ-n + g2e-iAe-Jl,"] , 
_qz-n+1 

We easily see from the results quoted in Sec. III that, 
for n ~ 2, power series solutions (multiplied by the 
appropriate exponential function) result for all n, 
even in the case of the Yukawa types. 

With the aid of Eq. (31), we see that the solution to 
Eq. (30) is of the form 

G = exp [ ±if VCr) dr ] HuCr) , 

F = =fi exp [±i f VCr) dr ]Hf(r). 

(32) 

Forming S(r) = Hg + Hf and D(r) = Hg - Hf and 
substituting Eq. (32) into Eq. (30), we obtain 

S' + (; ± 0) D ± it5S = 0, 

D' + (; =f iA)S ± i(2V - t5)D = 0, 
(33) 

with A = -mc2 , t5 = E. Assuming a solution to Eq. 
(33) of the form 

00 

D = L dmr(n-ll+m, 
m=O 

38 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co. 
Inc., New York, 1955), Chap. 12. 
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we may obtain, specializing to the non~ Yukawa case 
fJ, = 0 for m :::;;- n - 2, 

{:l: ')m (}m 
Sm = I -so, 

ml 

• qeiA 
do = :l:/-2 so, 

2g 

d = {=F i)m-ltJm-1 eM. [qr5 + ;. Js m > O. 
m 2g2 m! (m _ I)! 0, 

When m = n - 1, we have 

[ 

(}m iq2eiAJ 
sn-1 = (:l:i)m --; =F -2 2 So, 

m. mg 

d .. _
1 

= [(=F om-l(}m-l e
iA (q(} + ;. ) 

2g2 m! {m - 1)1 

For m > n, the recursion relations are 

_ qm e2iA]so. 
4g4 

Sm = :l: ~ S.7>+1 _1.. (qdm-n+1 :l: iAdm_ .. ), 
m m 

:l: ieiA . 
dm = --2- (qsm =F IASm_ 1) 

2g 
ieiA . 

:l: -2 (mdm- n+1 =F li5dm_ n)· 
2g 

We see that the functions Hg and H, are of the form 

1 n-2 1 00 

Hg = - I Smrm + - I cmrm, Cm = Sm + dm' 
2111-0 2 m=n-l 

1 n-2 1 00 

H,=- ISmrm+- 1 emrm, em=sm-dm. 
2 m=O 2 m=n-l 

These series are, of course, asymptotic, not convergent. 
We note the interesting feature ofEq. (32): that for 

neither attractive nor repulsive potentials do the 
solutions go to zero exponentially at the origin; but 
rather, they oscillate wildly. This is similar to the 
attractive potential case in the Schrodinger equation 
and is related to the Klein paradox. This behavior 
results from the fact that near the origin a Dirac 
particle may have very large momentum and large 
negative kinetic energy even when the potential is 
strongly repulsive. As is well known, the physical 
one~particle interpretation of the Dirac equation must 
be altered in such situations.39 

VI. CONCLUSION 

There are a number of cases where the use of 
singular potentials is of interest physically. In addition, 

.. J. D. Bjorken and S. Drell. Relativistic Quantum Mechanics 
(McGraw-Hill Book Co., Inc., New York, 1964). 

the mathematical behavior of the scattering by singular 
potentials is of interest in helping to study the diver­
gences in field theory. In fact, the study of these sin­
gular systems sheds almost the only available light on 
what physics could be like if field theory or S~matrix 
theory do not have the nice analytic properties 
usually conjectured. 

For the SchrOdinger equation, it was seen that only 
,-4 and ,-6 potentials lend themselves to simple 
asymptotic representations, while only the singular 
Yukawa behaving as e-Uf' r-4 has a simple type of 
solution. The leading two terms are available in all 
cases, but the general form of the solution is, usually, 
extremely complicated. 

In the Dirac equation, all the potentials considered 
are amenable to an asymptotic series solution. In this 
case the behavior of repulsive potentials near the 
origin differs radically from the nonrelativistic 
behavior. 
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APPENDIX 

For 
VCr) = g2e-iA/r4, 

the S·wave scattering length is given simply by 

a = ge-iAl2• (At) 

To obtain a result for 

we write the radial Schrodinger equation as 

2 -iA 2 -iA 

4>" - ~ 4> = ~ (e-pr 
- 1)4>. (A2) 

r 4 r 4 

The Green's function for this equation is made from 
the solutions for p = 0, so that 

X exp (ge-iM2r,-1), r < r', 

i-Al2 
G(r, r') = - rr' exp (ge-iMr-1) (A3) 

2g 

x exp ( - ge-iA/2r,-l). r > r', 
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The solution to Eq. (A2) may now be written as 

ge- i A/2 . 
cp(r) = cpo(r) - -- r exp (ge .... M2r-1

) 

2 

X l>-3(e-w ' - 1) exp (- ge-iM~'-l)cp(r') dr' 

ge-iM2 . 
- -- r exp ( - ge-,l1/2r-l) 

2 

X LX'r'-3(e-/l.' - 1) exp (ge-iM2r,-1)cp(r') dr', (A4) 

where CPo = r exp (_ge-il>./2r-l) is the solution to the 
Schrodinger equation for p. = O. The scattering length 
is obtained from Eq. (A4) by taking the limit 

e-iM2 
lim cP(r) ,...", r - ge-i A/2 - -g-- (r + ge-iI1l2) 
..... 00 2 

X 5000 

r,-3(e-/l" -1) exp (- ge-iM2r,-l)cfo(r') dr' 

1· ge-iM2 ( -iM2)fco '-3( -/l" 1) - 1m -- r - ge r e -
.-+co 2 • 

X exp (ge-iI1l2r,-1)cp(r') dr', (AS) 

and retaining constant terms and terms linear in r. 
If p.g is small enough, we may solve Eq. (AS) by 

iteration and put cp(r) = cPo(r) inside of the integrals. 
This gives us, for small flg, the first correction to 
Eq. (AI). We have 

-iM2 
lim cp(r) ,...", r - ge-iM2 - ~ (r + ge-il1/2) 
.-+ co 2 

X lco r,-2(e-/l" - 1) exp (_2ge-iM2r'-1) dr' 

-lim ~ .(r - geiMll) r,-2(e-/l" - 1) dr'. (A6) 
-iM2 foo 

.-+co 2 • 

As r -- 00, it is easy to see that the only term in the 
second integral that causes a contribution to the 
scattering length is 

_ roo r-2 dr = _ ! . 
J. r 

The other term falls off exponentially rapidly since it is 
essentially the exponential integral. Thus the last 
term in Eq. (A6) contributes a constant term !ge-il>./ll. 
Note that if fl = 0, this term is not present since it is 
cancelled by the first term in the integral. But as long 
as p. > 0, regardless of how small it is, we obtain this 
term. 

The first integral in Eq. (A6) has a second part which 
is easily integrated: 

- r-ll exp ( - 2ge-l1/~-1) dr = - -, Ll < 17. l
co ~~ 

o 2g 

The first part, 

lCO r-2 exp (_2ge-iM2r-1)e-/J' dr, (A7) 

is the Laplace transform of ,-2 exp (_2ge-il>./llr1). 
The result is available from the general result40 that 

fOO e-Pt(tV-le-bl(4t» dt = 2[~Jv/2Kv[(bP)1] Re b > 0 
1 ~ ~p>~ 

where Kv(x) is the modified Bessel function of the 
third kind. 

So Eq. (A 7) becomes 

i 
2[~J eiA/4K1(2e-iM\2p.g)l). 

Collecting terms, we have 

!~~ cp(r) "" r[l - (P.;)ie-iM4Kl(2e-iM4(2P.g)l) + ! ] 

- [ge-iM2 + g(P.:le-3iM4Kl(2e-iM4(2P.g)1) 

- !ge-il1l2
} (A8) 

Thus the scattering length is 

!ge-iM2 + g(!p.g)ie-3iM4Kl(2e-iM4(2p.g)!) 
a = ~------~~~----~~--~~~ 

! - (!p.g)ie-iM4Kl(2e-il1I4(2p.g)i) 

(A9) 

Since for small x, Kl(X) -- IJx + !x In x + O(x), 
we may approximate (A9) by keeping only the first 
two terms in the Bessel function expansion to obtain 

!ge-il1/2 + g(p.g)e-il1/ 2 In [2(2p.g)1] 

a = 1 _ (p.g)e-iM2 In [2(2p.g)i] , 

or, for small enough p.g, 

a = ge-il1I2[t + !(p.g)e-iM2 In (p.g)], (A10) 

which is the expression given in Eq. (29). Due to the 
extra term mentioned above, this expression .does not 
reduce to Eq. (AI) in the limit p.g -- O. Thus the 
dominant effect of the Yukawa exponential term is to 
cut the scattering length in half. This type of behavior 
was mentioned in Sec. IV, where it affected the 
wavefunction itself. 

'0 Bateman Manuscript Project, Tables of Integral Transforms 
A. Erdelyi, Ed. (McGraw-Hill Book Co., Inc., New York, 1954), 
Vol. I. 
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The Wick transformation in momentum space is modified to include all scattering energies by use of a 
coordinate surface which possesses limited detours into the complex relative energy plane. This device 
retains the simple form of the equation for the Bethe-Salpeter amplitude 'P(p, po). It is shown that the 
transformation is valid if 'P(p, po) has the cut structure indicated by field theory, and this structure is 
shown to be consistent with the Bethe-Salpeter equation provided the interaction Vex) satisfies a simple 
causality condition. It is further shown that the cut structure of a solution to the transformed equation 
can be deduced from the causal structure of the interaction alone without reference to field theory. 
Basic properties of the transformed equation are derived and a numerical treatment for purely elastic 
scattering is presented. 

1. INTRODUCTION 

THIS paper will be concerned with the Bethe­
Salpeter equation1 for two nonidentical spinless 

mesons ("a" and "h") of equal mass m interacting 
in the ladder diagram approximation via the field of a 
third spinless meson of mass fl. Principal attention 
will be paid to the scattering case in which E, the total 
center-of-mass frame energy, is greater than 2m. In 
relative momentum four-space in the center-of-mass 
frame the equation will be taken as 

tp(p) = tpo(p) - _1_ fV(p - 'fj)tp('fj) d4'fj, (Ll) 
D(p) 

where p = (p, Po), 'fj = (0, 'fjo), and with q2 = q2 -
q~(n = c = 1). 

The function of D(p) is 

D(p) = [(p + tE)2 + m2][(p - tE)2 + m2] (1.2) 
= (p2 _ /(;2)2 _ E2pL 

k2 ::= (E/2)2 _ m2, 

V(p - 'fj) = 1T-
2[(p _ 'fj)2 + ,u2r 1 

and, for the scattering case, E > 2m, 

tpo(p) = c53(p - Pin)c5(po) 

with incident center-of-mass momenta 

Pin = (Pa)in - (Pb)in, 

Ipinl = k; 

tp(x), the configuration space amplitude, 
related to tp(p) by 

tp(x) = f ei (px-pol1)o)tp(p) d4p, 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(1.7) 

(l.8) 

is to be 

(1.9) 

* Work supported in part by the u.s. Atomic Energy Commission. 
t All the numerical work and most of the theoretical work in this 

paper was performed while the author was a National Science 
Foundation Fellow at Massachusetts Institute of Technology in 
Cambridge, Mass. 

IE. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951); 
M. Gell-Mann and F. Low, ibid. 84, 350 (1951); J. Schwinger, Proc. 
Acad. Sci. U.S. 37, 455 (1951). 

and the Feynman convention m --+ m - iE, ,u --+ fl -
iE' is then understood as the proper way of handling 
singularities in l/[D(p)] and V(p - 'fj). For the case 
of purely elastic scattering, 2m < E < 2m + ,u, 
Schwartz and Zemach2 have presented an analysis 
of the Bethe-Salpeter equation in the circumstance 
considered here and have produced numerical scatter­
ing results. Their approach is related to the previous 
work on the bound-state case by Wick3 in that, as 
Wick, they use the device of rotation to imaginary 
values of the relative time variable to produce a 
transformed integral equation with the standard 
Euclidean metric which is more susceptible to solution 
than the nonrotated equation with its Lorentz 
metric.2a 

The treatment of Schwartz and Zemach for elastic 
scattering energies differs somewhat from the approach 
of Wick in that the former authors perform the 
sought-after rotation in configuration space, whereas 
the rotation of Wick for the bound state case (E < 2m, 
tpo(p) ::= 0) is performed primarily in momentum 
space, i.e., is primarily concerned with rotation of the 
variables Po and 'fjo in Eq. (1.1). For the scattering case, 
the relationship between rotations in these two forms 
of the equation is not trivial, as is apparent whenever 
calculations in momentum space become a practical 
necessity. Thus Schwartz and Zemach are forced to use 
a distorted contour in momentum space when 
evaluating certain integrals needed to obtain their 
numerical results. 4 

We present below a simple method for extending the 
Wick rotation in momentum space to scattering 
energies. In this modified procedure the necessary 

2 C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966). (a) 
Recent work on the momentum space aspects of the Bethe-Salpeter 
equation appears in thefolJowing: A. Pagnamenta and J. G. Taylor, 
Phys. Rev. Letters 17,218 (1966); M. 1. Levine, J. A. Wright and 
J. A. Tjon, University of California, preprint (September 1966). 

3 G. C. Wick, Phys. Rev. 96, 1124 (1954). 
4 See Ref. 2, Fig. 2. 
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contour distortion presented by Schwartz and 
Zemach plays a fundamental role. Many features of the 
Bethe-Salpeter equation can be easily demonstrated 
for the resulting momentum space representation. 
Also, a method of obtaining numerical results in the 
elastic energy range from the equation in this form will 
be discussed, and some computed values presented 
which serve as a rough check on the Schwartz-Zemach 
procedure and other more recent calculations.2a 

2. TRANSFORMATION IN MOMENTUM 
SPACE 

As an initial step toward transformation of the 
Bethe-Salpeter equation in momentum space, one can 
refer back to Wick's analysis (based on the operators 
and states of field theory) of the structure of "P(p, Po) 
as a function of complex Po. For E> 2m, as for 
E < 2m, the Wick analysis states that "P(p, Po) is 
analytic in Po everywhere except along two cuts. One 
cut lies just below the real Po axis extending from 
Wmin(P) - i€ to + 00 - i€, while the other lies just 
above the real axis from wmax(P) + i€ to - 00 + i€, 
where (for the mass equal case) 

Wmin(P) = -wmax(P) = (p2 + m2)t - E/2. (2.1) 

Although this analysis depends on field theory, it can 
be shown that the structure implied by Eq. (2.1) is 
consistent with the structure of the equation itself, as 
will be demonstrated later in this section. The location 
of the cuts in "P(p, Po) is shown in Fig. 1. 

For p2 > k2, wmin(P) is positive so that there is a 
gap between the two cuts and one can analytically 
continue "P(p, Po) counterclockwise from the real axis 
to the imaginary axis in complex Po, as is indicated in 
Fig. lea). For p2 S k 2 the two cuts in "PCp, Po) as a 
function of Po overlap since then wmin(P) is negative. 
Thus for p2 S k 2 one cannot analytically continue 
counterclockwise from the real Po axis to the imaginary 
Po axis without encountering singularities in "P(p, Po), 
but one can continue from the real axis to a contour 
which follows the imaginary axis except for two 
detours around those portions of the cuts which 
protrude below and above Po = 0, continuing to 
Wmin(p) - i€ and -wmin(P) + i€, respectively. The 
suggested contour for p2 S k 2 is shown in Fig. l(b), 
and will be recognized as the contour that was 
introduced by Schwartz and Zemach. Since the 
suggested Po contour for consideration of the analytic 
continuation of "P(p, Po) depends on p2, it is called 
Cpo. For p2 > k 2 the contour Cp2 is just the imaginary 
axis [see Fig. l(a)]. (The pathology of p2 = k 2 will be 
considered in more detail below.) 

(al 

=====-c=-:=:-=:====~~==:ao_=_ Re (Pol 
.B (pi 

(b) 

FIG. 1. (a) Cuts in 1p(p, Po) for p' > k' [cuts start at ±ot(p) = 
±(Wmin(P) - i~); arrows indicate continuation in Pol. (b) Cuts in 
",(p, Po) for p' ~ k'. 

One can now convert Eq. (1.1) into an integral 
equation for the analytic continuation of "P(p, Po) from 
real four-space to a new coordinate surface which 
consists of all real values of p, but only those complex 
values of Po which lie on Cp•• In order that this 
conversion be accomplished, one must analytically 
continue in po all terms on the right-hand side of 
Eq. (1.1), 

"Po(p, Po) - _1_ ffV(p - 'fJ)"P(rJ) d'fJo d3n (2.2) 
D(p) 

from the real axis to Cp2, and also one must deform 
the 'fJo contour in Eq. (2.2) from the real axis to the 
contour Cn for every n. 

Consider the first term in Eq. (2.2), 

"Po(p, Po) = 153(p - Pin)l5(po)· (2.3) 

To treat this term consistently, one needs a representa­
tion of l5(po) which exhibits the singular structure 
indicated by the Wick analysis. Such a representation 
is readily achieved by writing 

l5(p ) = _1 (_1 ___ 1 __ ) 
o 211'i Po - i€ Po + i€ ' 

t2.4) 

where € is positive real and arbitrarily small. With 
l5(po) in this form, "Po has singularities in Po at Po = 
± i€. But the points ± i€ fall in the cut region allowed 
by Eq. (2.1) for p2 S k 2 , and hence are avoided by 
counterclockwise continuation to Cpo for p2 S k 2• 

Since the incident particles are strictly on the "mass 
shell" p2 = k2, "Po(p,Po) == 0, ifp2 'J'f. k2 , and therefore 
the singularities in "Po(p, Po) with l5(po) in form Eq. (2.4) 
conform to the Wick structure indicated by Eq. (2.1). 
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_____ +-=~~=------Re(Pol 

FIG. 2. Location of poles in 1/ D(p) relative to Cpo (arrows indicate 
relocation of poles under E = '" ->- '" + i".). 

Further, if one lets € have an infinitesimal positive 
imaginary part € - €1 + i€2' then the points ±i€ are 
also avoided by the contour rotation p2 > k 2 and all 
ambiguity in defining Cpo for p2 near k 2 is eliminated. 
With this convention for E, the poles in Eq. (2.4) at 
± i€ remain on the same side of the Po contour through­
out and the right-hand side of Eq. (2.4) satisfies 

Li(Po) . [r.h.s. of (2.4)] dpo - f(O) (2.5) 

-alp) 
E ----. 

-Wmin(P) -Wmln(n) 

(b) 

in the limit I€I- 0 whether C is the real axis or Cpa 
for any p (provided fis analytic at Po = 0). Note (see 
Fig. 2) the convention € - €1 + i€2, i€ - i€1 - €2 is a 
natural one for relocating poles relative to Cp 2. Thus, 
with Eq. (2.4) and € - €1 + i€2' "Po(p, Po) can be 
continued to Cpo for all p and the formal identification 
"Po(p, Po) = b3(p - Pln)b(po) can be retained for the 
analytically continued "Po. 

It remains to analytically continue 

- _i_ fV(p - n)"P(n) dno d3n (2.6) 
D(p) 

in Po from the real axis to Cpo. 
Continuation of the factor 

l/D(P) = [(Po - cx)(po + cx)(Po - {J)(Po + (J)]-l, (2.7) 

where 
cx(p) = (p2 + m2)! - (E/2) - ie, 

(J(p) = (p2 + m2)! + (E/2) - ie, 

(2.8) 

(2.9) 

(-i€ is assigned by the Feynman convention and 
€ = €1 + i€2 is understood to be available if needed) 
is easy since the poles at ±(J(p) never obstruct 
continuation [note 1m ({J) < 0, Re ((J) > 0)] while 
cx(p) and -cx(p) lie at Wmin(P) - i€ and -Wmin(P) + 

poles In V(p-",) 01 

1 

;t'Jo+[ip-n12+~2Jl 
I 
I 
I 
I 
I 
'"' ...... , 

----:::"""',...j..-~:_=4--;;-___,==-..,.:-:.....' -Re( Po 1 '70) 

(c) 

-', 
I 
I 
I 
I 

FlO. 3 (a), (b), (c). (See legend opposite.) 
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iE, respectively, and hence are specifically avoided by 
CIl" [see Fig. 1 (b)]. 

Finally, as we now show, simultaneous continua­
tion in po and deformation of the 'YJo contour in the 
term 

II V(p - 'YJ)w(n, 'YJo) d'YJo d3n == T(p) (2.10) 

can be accomplished in the manner presented by Wick 
for the bound-state case.s In order to simplify the 
discussion of this process, one may consider trans­
formation of the 'YJo contour for the special value of 
Po = 0 which lies on both the real axis and Cp •• 

Subsequently, one can consider analytic continuation 
of this transformed integral to all Po on CIl" • 

It is established by assumption of the Wick structure 

poles ot 1 

r 2 2]2 1{, -L(p'nJ +~ 

................. 
~~\ 

c~ 

that singularities in wen, 'YJo) will not interfere with 'YJo 
contour deformation from the real axis (counter­
clockwise) to Cn •• That the poles in V(P - 'f}) at 
± [(p - n)2 + ,u2]1 will not interfere with the desired 
rotation is illustrated in Fig. 3(a). Hence, the 'YJo 
contour change is valid for po = O. Now one wants 
to move Po from po = 0 along Cp2' thus analytically 
continuing the transformed integral 

(2.11) 

to all Po on Cp2. This process of analytic continuation 
can be taken trivially under the integral sign provided 
the poles at '± = Po ± [(p - n)2 + ,u2]1 never cross 
the contour Cn2. The two paths followed by these 

poles In V{P-'1l a,f 

1{, + [(p_nl2+~2]Z 

....... '-------,;--------------.::..c.---t-4t--"'-----''---Re(po, "7
0

) 

Wick cut In ",(p,Po) Wick cut in l/I(n,'1o ) 

(e) 

, 
E/2-(p~+m2l2 =-l1,-t. z 

(d) 

Cp2+2l1 

• I 
I 
I 
I 
I 
I , , 

M (p~)+ lEi +l1 

~:::.:::~~~~~i===:::::::"::~=---:::::"'~ 

··~:::1. . ~ -~~~m')!"''-'' 
I 

I ---­I , , 
Cp2 +2l1 

FIG. 3. (a) Continuation of T(p, Po) by moving Po from po = 0 along Cp'. All 1')0 contours have previously been deformed to Cn2 after 
using ft-+ ft - iE' to locate poles in V(p - 1'). (b) Continuation along Cf, Arrows are of length M(n2) - M(p2). (In the lower half plane 
the arrows would point in the opposite direction.) (c) Separation between 1')0 on Cn' and poles in V for E < 2m + ft. Arrow is of length 
{[(p - n)2 + ft"]! - M(p2) - M(n")}. (d) Continuation of T(p, Po) up to the Wick cuts in 1p(p, Po). Arrow length is M(n") - M(p2). (e) 
Shifting the po contour for a specific p, p' < k", in steps of size a through the first and third quadrants. Shaded area indicates initial strip of 
analyticity in T(p, Po) for this p. [The validity of the procedure shown here is generally independent of small details in contour shape. How­
ever, two criteria must be satisfied: (I) The maximum horizontal separation between any two of the original or shifted contours, e.g., Cp2 

and Cn2, must be given by the difference between their maximum real part extensions, IM(p") - M(n2)1. (2) In shifting horizontally from 
Cpt to Cpt + a, some points on Cp2 may be displaced less than a but none may be displaced more than :.1.. These criteria are easy to meet, 
as the above choice of linearly segmented contours demonstrates.] (f) Shifting the Po contour for a specific p, pi > p2 > p! = k 2, in steps of 
size Ai through the left-half plane. Shading indicates initial strip of analyticity in T(p, Po). [The criteria mentioned under Fig. 3(e) are again 
observed.] 
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poles as Po moves along Cpt are shown in Fig. 3(a). 
Defining M(p2) to be the maximum real part extension 
of Cpo, 

M(p2) = 0 if p2 > k2, 
(2.12) 

M(p2) = iE - (p2 + m2)! if p2 ~ k2, 

it will be seen from Fig. 3(a) that the poles in question 
always stay on the same respective sides of C0 2 

(although they may come infinitesimally close to it) 
provided 

[(p - n)2 :f- ,u2]! > IM(p2) - M(02) I (2.I3a) 

for all p and o. If p2 and 02 are greater than k 2, Eq. 
(2.I3a) holds trivially and rotation is possible as in 
the bound-state case. Now consider 02 < p2, 02 < k 2 

(the case p2 < 02, p2 < k 2 will be covered by sym­
metry). Then, Eq. (2.I3a) becomes 

[(p - 0)2 + ,u2]! > tE - (02 + m2)! - M(p2). 

(2.14) 
But M(P) ;:::: 0, so it suffices to show 

[(p - 0)2 + ,u2]! > iE - (02 + m2)!. (2.15) 
Since 

[(p - 0)2 + ,u2]! ;:::: ,u (2.16) 

and (02 + m2)! ;:::: m, it suffices that 

,u > tE - m or E < 2m + 2,u. (2.17) 

Thus, Eq. (2.13) is easily verifiable if E is less than the 
energy necessary to produce two real mesons of mass 
,u by inelastic scattering. To show Eq. (2.14) holds 
for ar~itrary E, note 

M(p2) ;:::: tE - (p2 + m2)! (2.18) 

for all p, so Eq. (2.14) follows if 

[(p - 0)2 + ,u2]! > (tE - (02 + m2)!) 

- (tE - (p2 + m2)!), (2.19a) 
i.e., if 

[(p - 0)2 + ,u2]! > (p2 + m2)! - (02 + m2)!, (2.19b) 

for all n2 < k 2 and p2 > 02, and Eq. (2.14) certainly 
follows if Eq. (2.19b) can be shown for arbitrary 
0, p. Setting w = Ipl, e = 101, then 

[(p - n)2 + ,u2]! > Ie - wi, (2.20a) 
while 

(p2 + m2)! _ (n2 + m2)! S 1(l',2 + m2)! _ (e2 + m2)ll 
Iw2 

- e21 
= (w2 + m2)! + (e2 + m2)! 

S Iw
2 

- e
2

1 = Iw _ el , (2.20b) 
w+e 

verifying Eq. (2. 19b). [Inequality (2.19b) has been 
fully considered in the general context of Fourier 
transforms and causality by Dyson.5 The relationship 
of causality to the Bethe~Salpeter equation will be 
emphasized beloW.] 

In a manner analogous to Wick's rotation, one can 
now continue T(p) in Eq. (2.10) to any Po which lies 
in the region swept by counterclockwise contour 
deformation from the real Po axis to Cp.: Call the 
partially deformed contour C~ [as shown in Fig. 3(b)]. 
For each n in Eq. (2.10), deform the 'f}o contour from 
the real axis to a contour C~o horizontally displaced 
from C~ by M(n) - M(p) as shown in Fig. 3(b). 
Finally, Eq. (2.10) with this choice of 'f}o contours can 
be continued in Po along C~ in the manner just 
considered for continuation, Eq. (2.11), along Cp •• 

Thus the extension of the Wick rotation in momentum 
space to all values of E greater than 2m is complete. 

It is significant to note there are circumstances 
under which Co2 will never come infinitesimally close 
to the poles in V(p - 'f}) for Po on Cp •• As shown in 
Fig. 3(c), such separation will occur if 

[(p - n)2 + ,u2]! > M(p2) + M(n2) (2.13b) 

for all p, 0, and thus will occur if ,u > (tE - m) + 
(tE - m) = E - 2m, or E < 2m + ,u. This will be 
recognized as the energy restriction for purely elastic 
scattering and the momentum-space transformation 
in this case corresponds to the transformation of 
Schwartz and Zemach in configuration space. 

The transformed equation reads 

"P(p, Po) = c53(p - pin)c5(po) 

- _1_ If V(p - 'f})"P('f}) d'f}o d3
0, (2.21) 

D(p) C
o

2 

valid for all real p and all Po on Cpo for any value of 
E>2m. 

A. Singularities in the Transformed Equation 

The advantage of transforming to the new coordi­
nate surface is that the singularities in 1/ D(p) and 
V(P - 'f}) which occurin Eq. (Ll) over an unbounded 
region of real four-space are now confined to a limited 
region on the new coordinate surface.· Singularities in 
l/D(p) only occur when the contour Cps touches one 
of the poles in 1/ D(p, Po) at 

Po = ±«p2 + m2)!- tE - i£) 
and 

Po = ±«p2 + m2)! + tE - i£). 

But the latter set of poles are never touched by Cpa 

6 F. 1. Dyson, Phys. Rev. 110, 1470 (1958). 
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(see Fig. 1), while the former are only touched for 
p2 S k2 by the "detour" segments of Cp•• Thus, 
outside the limited region of detour on the transformed 
coordinate surface, I/D(p) is free of singularity and 
vanishes as (l/p)4 as p2 -+ 00. 

Now consider singularities in 'rJo in V(p - 'rJ) for 
fixed Po on Cp •• As discussed above, poles occur at 
'± = Po ± [(p - n)2 + /-t2J!. In order for these poles 
to touch Cn• at some 'rJo, it must be that 1m ('rJo) = 
1m (Po) = 0, i.e., po must be zero (pZ > kZ) or on a 
detour section of Cp 2 with p2 < k2 and 'rJo must be 
similarly restricted. Now for p2 > k 2 , inequality 
(2.13a) excludes the possibility of Cn2 touching a 
pole. By symmetry, no poles can be touched if 
n2 > k 2• Thus, singularities can only occur in V(p -
'rJ), when p2 < k 2, n2 < k2, and Po and 'rJo are on the 
detour portions of Cp 2 and Cn., respectively. In the 
limit p2 -+ 00 outside the region of detour, V(p - 'rJ) 
vanishes as (A/1T2). (ljp)2 for any fixed 'rJ. [It has 
already been commented that for E < 2m + ft, 
V(p - 'fj) is completely free of singularity on the whole 
coordinate surface.] The regularity of l/D(p) and 
V(p' - 'fj') away from p2 < k 2 , 1m (Po) = 1m ('fjo) = 0 
allows one to form an intuitive picture of the trans­
formed equation. Asymptotically, it is the same regular 
equation considered by Wick for E < 2m. 

Since for most of the coordinate surface, Po and 'rJo 
are purely imaginary, it is useful to write the trans­
formed equation in terms of rotated coordinates 

p~ = Po/i, p' = (p, p~), p,2 = p2 + p~2 (2.22) 

with analogous definitions for 'rJ~, 'rJ', 'fj'2, Writing 
?p' (p') =- i?p(p) and noting b(po) = b( ip~) = - ib(p~), 
Eq. (2.21) becomes 

?p'(p') = b3(p - Pin)b(p~) 

+ _1_ If V(p' - 'rJ')?p'('fj') d'fj~ d3n, (2.23) 
D(p') 0'n2 

with 
D(p') = (p'Z _ P)Z + E2p~Z, (2.24) 

V(p' - 'fj') = A/1T2[(p' - 'fj')2 + !tZr1; (2.25) 

C~2 is Cn• rotated clockwise by 90°. The complex p' 
coordinate surface on which Eq. (2.23) applies can be 
sketched in terms of Ipl, Re (pJ, and 1m (p~) as 
shown in Fig. 4. 

B. The Wick Frequency Assumption-Causality 

It should be noted that the ability to make the 
contour transformations in complex Po, 'rJo, demon­
strated above, only depends on the Wick frequency 
analysis (based on field theory) through the assump­
tion that ?pen, 'fjo) in Eq. (1.1) has the structure 

IPI 

""""'---Re(/J~) 

FIG. 4. Transformed coordinate surface. 

indicated by Eq. (2.1). But the only assumption really 
needed is that ?pen, 'fjo) be analytic in the region swept 
by counterclockwise deformation of the 'rJo contour 
from the real axis to Cn2. The demonstrated ability to 
continue the right-hand side of Eq. (1.1) in complex Po 
throughout the region of contour distortion between 
the real axis and Cp" ,proves that this structure, which 
was assumed for ?pen, 'fjo), although suggested by field 
theory, is fundamentally consistent with the structure 
of Eq. (Ll). 

One may go further and ask whether the full Wick 
structure implied by Eq. (2.1) can be shown consistent 
with the structure of Eq. (1.1) in this way. The above 
analysis has shown that ?Po(p,Po) and IjD(p) are 
consistent with Eq. (2.1). It remains to show that 

T(p) = II V(p - 'fj)?p('fj) d4'fj 

can be continued throughout the complex Po plane up 
to the cuts described by Eq. (2.1), assuming that 
?pen, t}o) has the cuts described by Eq. (2.1) in complex 
'fjo· 

As illustrated in Fig. 3(d), the required continua­
tion, accompanied by the appropriate 'rJo contour 
distortion, can be accomplished if 

[(p _ 0)2 + ft2l! > l(p2 + m2)t - (n2 + m2)!1 

(2.l9c) 

for all p, n. (One first chooses the path of Po continua­
tion C~, then deforms the 'rJo path of integration to 
C~p for each n, and finally continues Po along C~.) 
But this inequality is equivalent to inequality (2.19b). 
Thus, not surprisingly, ability to perform the Po, 'rJo 
contour transformations in Eq. (Ll) for arbitrary E 
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follows from the consistence of Eq. (Ll) with the 
structural requirements of Eq. (2.1) for all p. It is 
significant to note that in the above proof of this 
consistency, as indicated by Eq. (2.20a), it suffices 
that V satisfies a simple condition: V(q, qo) can only 
have singularities in qo which are at (r - i€) and/or 
-(r - i€'), where r is real and r ~ Iql. In configura­
tion space, r ~ q implies that Vex, xo) for Xo > 0 and 
Xo < 0 is a superposition of waves which move with a 
velocity less than or equal to 1, the velocity of light. 
This inequality places a very strong restriction on V 
since it must be satisfied for all q. On the other hand, 
as indicated by Eq. (2.16), for the restricted range 
E < 2m + 2f1-, the contour transformation to Cp 2 

proposed here only requires r ~ f1-, i.e., that Vex, xo) 
have Xo frequencies greater than f1- for Xo > 0, and less 
than - f1- for Xo < 0 ("causality" need only be obeyed 
for Iql ::;;; f1-). 

One naturally asks whether the cut structure of "p 

can be deduced from the Bethe-Salpeter equation 
alone without reference to field theory. Toward this 
end, note that if "P is a solution to the transformed 
Eq. (2.21), then the known separation of the poles in 
V(P - 'Y/) from 'Y/o on Cn2 indicates that 

T(p, Po) =f'r V(p - 'Y/)"P('Y/) d4'Y/, 
JOn" 

appearing in Eq. (2.21) will be an analytic function 
of Po at least within a strip about Cp2 [see Fig. 3(e)] 
of half-width 

d p = min ([(p - 0)2 + f1-2]1 - IM(p2) - M(02)!) 
n 

~ min ([(p - o? + f1-2]1 
n2 :Sk2,p2 :Sk2 

_ l(p2 + m2)1 _ (02 + m2)!!) == d > O. 

[A closer inspection shows that 

d = (P + (m + f1-)2)! - (k2 + m2)!.] 

But noting the analytic structure of I/D(p,po), Eq. 
(2.21) shows that "P(p, Po) can be continued in Po 
(for any p) to the right in the upper-half plane (and/or 
left in the lower halO through a distance d from Cp 2 

to "Cp 2 + d," where d is independent of p. Then 
putting Po on Cps + d, and noting that the trans­
formed equation indicates "P(p, Po) ,....., O(1/pg) as 
Pol; - ± ex) on Cp2, one can deform all the rJo contours 
in Eq. (2.21) from Cn2 to Cn• + d. Now one can 
repeat the argument and continue "P(p, Po) to Cps + 
2d, Cp 2 + 3d, etc. 

If, however, one applies this procedure to the left 
in both upper- and lower-half planes [see Fig. 3(f)] , 
one cannot continue "P(p, Po) through the poles in 

l/D(p,po)' For any p2 such that these poles are 
encountered, the shifted contour must detour around 
them. One thus "discovers" the Wick cuts in "P(p, Po). 

As one shifts successively to the left, adding detours 
at each step [Fig. 3(0], the length d i through which 
one can move the non obstructed parts of all the Po 
contours in the ;th shift decreases as ; increases. After 
i-I shifts, the Po contours in the upper-half plane 
must detour whenever p2 < pL1' where 

P7-1 = (E/2 +ii d i )2 - m2 > pL2 > ... > p~ = k2. 
j=l 

Thus 
d i = min ([(p - 0)2 + f1-2]1 

n2 <Pi_IS•pl <Pi_Ill 

_ l(p2 + m2)! _ (02 + m2)!!) 

< d i - 1 < ... < d 1 = d. 

[More specifically, 

d i = (pL + (m + f1-)2)1 - (pL + m2)l.] 

However, since d i is bounded away from zero for 
any possible bound on 

the process of continuation illustrated in Fig. 3(f) can 
be extended throughout the left-half plane (and 
similarly throughout the right one) despite the 
decreases in d i . Thus, any solution of the transformed 
equation which has the asymptotic behavior indicated 
by the equation itself must have the analytic structure 
indicated by field theory. 

One notes again that the full Wick cut structure only 
results if V possesses the complete causal structure 
indicated by Eq. (2.19c). 

C. Properties of 1/ D(p')-Relationsbip to 
Nonrelativistic Theory 

As in the case of the nonrelativistic scattering equa­
tion, many important features of Eq. (2.23) are 
determined by properties of the factor 1/ D(P') [see 
Eqs. (2.7)-(2.9)] which can be written 

1 1 
D(p') = 4E(p2 + m2i 

[ 1.( 1 1) 
x fJ(p) I p~ _ ifJ(p) - p~ + ifJ(p) 

1 .~ 1 1)] - - I - (2.27) 
!X(p) ~ - i!X(p) p~ + i!X(p) . 

This expression corresponds to the nonrelativistic 
term 1/(p2 - k 2), and noting that 

!X(p) • fJ(p) = p2 - k 2 (2.28) 
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one can write Eq. (2.27) in analogy to the non­
relativistic factor: 

[D(p')]-l = (p2 _ k2)-1 • d(p2, p~), (2.29) 

where, with w(p) = (p2 + m2)t, 

d(p2, p~) = (4E)-1([oc(p)lw(p)]i{[p~ - iP(p)tl 

- [p~ + iP(p)tl} - [P(p)/w(p)] 

X i{[p~ - iOC(p)tl[p~ + iOC(p)tl}). (2.30) 

Now note that at p2 = k2 , the following hold: w = 
E12, oc(p) = -iE -+ 0, pep) = E -iE -+ E, and thus 

d(k2,p~) = (4E)-I{(-iEIE)2i[(p~ - iE)-1 

- (p~ + iE)-I]- 2i[(p~ - E)-l 

- (Po + E)-I]) 

-+ -(i/2E)[(p~ - E)-l - (p~ + E)-I]. 

(2.31a) 

(2.31b) 

Setting E = EI + iE2' EI -+ 0, and taking C~s as the 
real axis (see Fig. 2), 

d(k2
, p~) -+ -(iI2E)[(p~ - iE2)-1 - (p~ + iEZ)-I], 

(2.32) 
so that, with arbitrarily small lEI understood, 

d(k2, Po) = (7TIE)~(p~). (2.33) 

Now using the familiar formula 

(p2 _ k 2r l = p(p2 _ k2)-1 + i7T~(p2 _ k2), (2.34) 

one has6 

_1_, = P A d(p2, p~) + i7T
2 

~(p2 _ k2)~(p~). 
D(p ) P - k E (2.35) 

It is easy to check that d(p2,PO) is a real factor in the 
sense that integrals of the sort f C;s U(p~) d{p2, p~) dp~ 
will be real if U*(P~) = U(p~ *) and U is analytic on 
C~2. Thus Eq. (2.35) effectively splits [D(p')]-l into 
real and imaginary parts in analogy to Eq. (2.34) for 
the nonrelativistic case. 

Equations (2.29) and (2.30) can be used to obtain 
the nonrelativistic limit of [D(P')]-l. Note one can 
consider the nonrelativistic limit to correspond to the 
limit m -+ EI2 -+ 00 for fixed k, since this implies 
me» mv, i.e., e» v where v is the incident particle 
velocity. But then for any finite p2, 

oc(p) = [E/2)2 + (p2 - k2)]t - E/2 

-+ (p2 _ k2)/E -+ 0, 

PCp) -+ 2m -+ E, w(p) -+ m -+ E/2, 

so that, very much in the manner just considered, 

d( 2 ) -+ i ( 1 _ 1 ) (2 36) 
P,Po 2E' .() '+'() . Po - IOC P Po IOC P 

6 This result corresponds to Schwartz and Zemach's equation 
(3.11) in Ref. 2. 

in the limit E -+ 00, k fixed. Note that although oc(p) 
becomes a negative infinitesimal for p2 < k2, the 
contour C;s specifically detours for p2 < k 2 so that the 
poles in Eq. (2.36) at ±ioc(p) stay on the same side of 
C;! for p2 < k 2 as for p2 > k 2 when oc(p) > O. Thus in 
Eq. (2.36), oc(p) can be treated as a positive (real) 
infinitesimal for all finite p2, giving 

d/(p2, p~) -+ 7T/E~(p~) (2.37) 
and 

7T 1 
l/D(p') -+ - 2 2 ~(p~) (2.38) 

Ep - k 

in the nonrelativistic limit E -+ 00, k fixed. 7 

Having analyzed the location of the poles in 
d(p2,PO) in detail, note that Eq. (2.35) and Eq. (2.38) 
can be derived simply by writing 

1 1 (/2) 
D(p') - (p,2 _ k2) P P , Po , 

where 

,2 , _!. [ (pIa - k
2
)/E ] 

pep ,Po) - E [(pI2 _ k'l,)/Ef' + Po2 

and p(pI2,p~) -+ 7TIE~(p;J for p'2 - k 2 = E2 -+ 0, or 
E -+ 00 by inspection. 

Finally, Eqs. (1.1), (2.29), and (2.33) yield a simple 
derivation of the scattering amplitude. Setting 

tp( x) = I ei(J/'X-PO>JO) tp(p) d4 p 

and using Eq. (Ll), 

tp(x,O) = eiJ/in'
x 

- iI e ip
•
x I D~P) 

x I V(p - '1]) d4
'1] dpo d3p. (2.39) 

Rotating contours in the manner introduced above, 
using tp'('I]') = itp('I]) and inserting Eq. (2.29) for 
l/D(p'), 

(2.40) 

T'(p') = If V(p' - 'I]/}qJ'('I]') d'l]~ d3n = T(p). 

C'n' (2.41) 

Now it is well known from studies of nonrelativistic 
scattering that in the limit Ixl-+ 00, 

II-P'X 2 1 2 Q(p) d~ -+ f(Qf)eikRIR, (2.42) 
p - k 

7 Again the result agrees with Schwartz and Zemach's equations 
(4.2) and (4.6). 



                                                                                                                                    

2314 ROBERT M. SAENGER 

where R = Ixl,/refers to the x direction, and/(Ot) == 
27T2Q(Pt) with Pt = ki. But the second term on the 
right of Eq. (2.40) is precisely of the form of the 
term on the left in Eq. (2.42), so that the usual non­
relativistic analysis yields8 for Xo = 0, Ixl- 00 

1p(x, 0) _ eillin'x + fCO,)eikRjR, (2.43) 
where 

f(O,) = r d(k2
, p~)Tf(p" p~) dp~ 

JO'kS 

= r ~ ~(p~)T'(Pf' p~) dp~ (2.44) 
JO'k! E 

= (27T3jE)T'(Pt, 0) = (27T3/E)T'(Pt). 

3. A METHOD OF APPROXIMATE SOLUTION 

Since the method to be presented here does not 
produce highly precise results but does serve as a 
rough check on other methods, the following discus­
sion is brief. 9 Outside the restricted region of 
detours in the coordinate surface, Eq. (2.23) indicates 
that 11p' (p')1 will vanish rapidly as p' - 00. Specifically, 
IjD(p') will vanish as 11/p'14, while 

IT'(p')1 = r A 1p'(r/) d4"1' 
JO'ns (p' - "I'l + ft2 

should vanish as l/lp'12 (assuming the integral over r/ 
is amply convergent). Thus in the limit 1p'1- 00 one 
expects 11p'(P')1 to vanish as I/IP'16 (reinforcing the 
assumption that the integral for T' is amply conver­
gent). This fact suggests that one can obtain good 
approximations to 1p' (p, p~) by solving a cutoff version 
of Eq. (2.23), i.e., by considering the restriction of 
Eq. (2.23) to a large sphere of radius A> k in p', 
"I' four-space. For E < 2m + po it has been com­
mented that Yep' - "I') is never singular for p' and "I' 
on the coordinate surface. Then for p' and "I' within a 
finite cutoff sphere, V(p' - "I') can be well approxi­
mated by a finite sum of separable potentials. Thus in 
the elastic scattering range one can take 

Nl Nl 
yep' - 1]') ~ .!.! .! V:jg:(lpl, p~)g~(lnl, 1]~)Pz(t)Pz(n), 

! ;=11=1 

(3.1) 

where Vi~ are real and gi are real for real'p' and 
analytic on the whole coordinate surface. But with the 
right-hand side of (3.1) substituted for· Yin Eq. (2.23), 
the new equation is as easy t~ solve as the non-

8 This result has been previously obtained via analysis of the 
Fourier transform of 1/ D [see Ref. 2, and A. R. Swift and B. W. Lee, 
J. Math. Phys. 5, 908 (1964)}. Momentum space arguments allow 
particular rigor in the elastic range because of the known analyticity 
of V(p' - rO and T'(p') (see Ref. 9). 

9 R. M. Saenger, Ph.D. thesis, Massachusetts Institute of 
Technology (1966). 

relativistic equation with a finite sum of (three 
dimensions) separable potentials. Using matrix algebra 
analogous to the nonrelativistic case, setting 

f(O,) = ,!fzPz(pt); fz = 21; 1 eiOI sin ~l 

and with Eq. (2.35) for 1m [1/D(p')], one finds 

tan ~t = {(27T3k)/[(21 + l)E]}G;Vl(J - U IV1r1G/, 

(3.2) 

(with all factors real so elastic unitarity is valid) 
where matrix notation is used; G is a column matrix: 

(GZ)j,1 = gJ(k,O), Ii} = ~ij, 
and 

u! = pI P;(q)g!(q')gXq') d4q'. (3.3) 
,j D(q') 

The range of q' integration in Eq. (3.3) is limited to the 
interior of the cutoff sphere of radius A. 

One method of getting an approximation to V of 
form Eq. (3.1) inside a sphere of radius At is to take a 
least-square polynomial fit to (1 + X2)-;-1 on the 
interval - 2A, :::; x :::; 2A" i.e., 

1 '" ~ C (X2)i 
[1 + x 2] = i~ i • 

(3.4) 

Then in units such that ft = I, 

V(p' - 1]') ~ .i .! Ci[(p' - 1]')2]i 
7T

2 
;=0 

for p', r/ inside a sphere of radius At. 
Now one can expand 

i 

(p' - 1]')2i = .!pjOizj .! A~,s,r"ip'2y(p~2)"(1]~2)'i(1]'2)', 
1=0 1,S,T,Q 

(3.5) 
s; q == 0, 1, ... ,Hi - j], 

y; l' = 0,1,' .. ,i - j - 2s; i - j - 2s, 

and since 
i J 

zi = .! ai1Pz(z) - .! aj!Pt(p)P1(n), 
1=0 1=0 

one has 

(3.6) 

where giq'2, q~2) belong to the set of functions 
(q'2)S(q~2y for l' = 0, 1,' .. , [(M - 1)/2] and s = 
0,1," . ,M - 1 - 21'. The dimension of V1isNM _ Z' 

where Nq == ([q/2J + I)(q + 1 - [q/2D. 
The constants VIj can be expressed in terms of the 

constants Ct. A;.'.T,q' and ail by simple arithmetic. 
The required operations for evaluating ~: can be 
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carried out rapidly by machine. Also, the integrals 
Ui!i can be done in closed form and expression Eq. 
(3.2) for tan b! evaluated by machine.9 

To investigate convergence as a function of the 
cutoff A, the fit to V was kept fixed with At = 4.0 and 
polynomial degree M = 10. The resulting tan b! was 
evaluated for several values of A up to and including 
At. Convergence as a function of M was investigated 
by setting A = At == Amin and varying M up to 10. 
To standardize this procedure, Amin was chosen to 
satisfy (A~lin - k 2)2 == £2A~in' since then IP'I == Amin 
roughly marks the beginning of the asymptotic region 
of IID(P'). 

From the results with variable A and fixed M, 
an estimate was made of the error incurred by cutting 
off the equation at A = Amin . The results with A = 
Amin and variable M were used to estimate the precise 
cutoff result at A = Amin . Finally, the estimated 
result at A = Amin was combined with the estimated 
error due to cutoff to give an estimate of the non­
approximated result. This scheme was only carried 
out fully for m == # == 1, I = O. The results for 
A == 1, k2 = 0.4 are listed in Table I. The estimated 
value of EI2k tan bo for Eq. (2.21) cutoff at A = 
Amin = 2.52 is 3.4 ± 0.2. The estimated error due to 
this cutoff is -0.2. Thus, with generous allowance 
for possible error, one can set EI2k tan bo = 3.6 ± 

TABLE I. Computed values of (E/2k) tan 6. at 
k" = 0.4, A = 1, m = 11 = 1. 

Values for variable A with M = 10 
A (E/2k) tan 60 

Amin = 2.52 3.133 
3.0 3.219 
3.5 3.266 
3.75 3.280 
4.0 3.290 

Limit 3.32 ± 0.03 

Values for variable M 
at A = Amin 

M (E/2k) tan 60 

7 3.149 
8 3.208 
9 3.268 

10 3.312 

Limit 3.4 ± 0.2 

0.4. Schwartz and Zemach find for this same case 
EI2k tan bo = 3.5640 ± 0.0002. 

The principal difficulty in the approach used here 
in that polynomial fits to (1 + X 2)-1 are difficult to 
handle numerically. Thus the degree of convergence 
was not great, and in some cases it was nonexistent. 
The method worked best at k 2 = 0 where for the 
least positive bound state A it yielded 0.765 ± 0.021, 
whereas Schwartz and Zemach find a value of 0.76222. 

4. CONCLUSION 

The principal advantage of viewing the Bethe­
Salpeter equation in momentum space is that 11 D(p) 
and V(P - 'Yj) have a simple algebraic form, in sharp 
contrast to the form of their transforms in configura­
tion space. The only difficulty with these functions in 
momentum space is the abundance of poles they 
possess due to the Lorentz metric. By making the 
modified Wick rotation suggested here one does not 
eliminate these singularities, but one does restrict 
their occurrence in the equation to a bounded region. 
All remaining singularities must be considered 
carefully in order to arrive at meaningful results. This 
has only been attempted here for purely elastic 
scattering E < 2m + # where only singularities in 
11 D(p) must be considered. For higher values of E 
the task of analysis is more complex. However, the 
technique of modified rotation, in that it minimizes 
the added complexity, and emphasizes the simple 
analytic structure of the equation for all values of E, 
should provide a useful point of view for further 
analysis. 
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A formulation of the notion of a Cartesian basis for a vector space suitably adapted to the local 
differential vector space at a space-time point leads to this description of and derivation for the law of 
motion of a mass point: There exists a class of equivalent 4-dimensional Cartesian frames in which the 
trajectory is a straight line, the velocity being constant along the trajectory. The lived-in coordinate 
system, in which the trajectory is in general not a straight line, is in general not a Cartesian coordinate 
system. The equation for the motion of the point is purely a statement of differential geometry-an 
integrability condition-and the forces which are responsible for the deviation from constant velocity are 
immediately derivable from the metric tensor of the non-Cartesian system. The equation of motion and 
the relations among dynamical variables are more relativistic than Newtonian, but the metric tensor is 
positive definite; no indefinite metric is needed. A Newtonian equation of motion is an approximation 
based on small velocity and it covers the general case of motion in a noninertial system in an external 
field of force. Intrinsic mass is identified as a constant of the motion and, although the relevancy of mass 
is somewhat limited in this description of the motion of a single point in an immutable force field, it is 
seen that the effective mass of the point contains a contribution by the potential energy. 

THE mathematics of differential forms is well­
established in the expression of analytical me­

chanics. Aptly described as intrinsic tensor analysis, it 
has been applied to relativity theory.l The connotation 
intrinsic suggests the freedom and consequent inci­
siveness of the mathematical technique, by virtue of 
which it has been used with great efficiency in the 
presentation of Hamiltonian theory in mechanics 
and in the restatement of electromagnetic and relativ­
istic equations. In this paper, the theory of differential 
forms--exterior calculus-is used from the start in the 
formulation of kinematics, which is the differential 
geometry of space-time. The beginning is a trajectory 
in 3-dimensional space. A trajectory is a flow line 
through tangent vectors attached to each point of the 
3-dimensional space. A tangent vector is a vector in a 
tangent space attached to each point of the 3-dimen­
sional space. It is easy enough to recall how it has been 
done. In 3-dimensional space, one sets up, following 
Gibbs, three-unit orthogonal vectors (i,j, k) at each 
point (x, y, z). A tangent vector is a linear combina­
tion (ai + bj + ck). If the coefficients (a, b, c) are 
functions of (x,y, z), then one has a vector field over 
the 3-dimensional space. 

Now it is a matter of experience that a richer treat-

1 C. W. Misner and J. A. Wheeler, Ann. Phys. (N.Y.) 2,525 (1957); 
reprinted in J. A. Wheeler, Geometrodynamics (Academic Press Inc., 
New York, 1962). There are many references to the literature of 
modern differential geometry and differential forms in the paper. 
Later publications are: H. Flanders, Differential Forms (Academic 
Press Inc., New York, 1963); and S. Sternberg, Lectures on Differ­
ential Geometry (Prentice-HaIl, Inc., New York, 1964). A compre­
hensive treatment of classical mechanics in the framework of 
differential forms without the explicit use of exterior calculus is 
given in L. A. Pars, A Treatise on Analytical Dynamics (John Wiley 
& Sons, Inc., New York, 1965). 

ment of kinematics results from the introduction of 
time as a fourth coordinate. (Originally, it was 
simply the parameter to describe the I-dimensional 
trajectory.) Given, then, a 4-dimensional space, how 
does one set up the tangent space? The answer to that 
question is the theory of differential forms and the 
development of exterior calculus. The (i,j, k) system 
is then seen to be an abridged version of a more 
general description of local structure. A naive exten­
sion of it would involve an overcommitment. It turns 
out to be rather unappealing to establish a tangent 
space at each space-time point based on a tetrad of 
vectors (ia;, i1l , iz , it), orthogonal or oblique. It is 
better to re-examine the notion of a Cartesian co­
ordinate system and then to show that there does 
exist a 4-dimensional coordinate system, not (x, t), 
which can be established as Cartesian. In the Cartesian 
coordinate system, there is no dynamics beyond the kin­
ematics: the trajectory tangent vector has unchanged 
components along the Cartesian axes from point to 
point. In the 4-dimensional Cartesian system the 
trajectory is a straight line. In the (x, t) system, a 
non-Cartesian system, the trajectory is described as 
curved-the deviation from straightness being attrib­
uted to forces, the forces now clearly ascribable to 
the geometry. It remains true that there is no dynamics 
beyond the kinematics. 

Since the notion of Cartesian equivalence is basic to 
this theory, it seems best to review that part of the 
theory of linear vector spaces which leads to the 
notion. This is done in the first section. Following that, 
the theory of differential forms and exterior calculus, 
as used in this paper, is developed. By this means 
the subject of kinematics is taken up. 

2376 
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I. LINEAR VECTOR SPACES 

A. Definitions, Bases 

An element of a linear vector space2 is denoted by 
Ix). Here the essential symbolism is the semibracket 
I ). The letter inside is merely the tag, the name, for 
the particular vector. No arithmetic is to be done 
inside the semibracket.3 The addition of two vectors 
is a vector. Addition is commutative and associative. 
There exists a unique vector, the identity element 
under addition, called the null vector and denoted 
simply by O. To each vector there is associated a 
unique vector-its negative-and the sum of a vector 
and its negative is the null vector. 

The vector space is defined over a field of scalars 
which, for this paper, need be no more than the field 
of real numbers. If C1. is a scalar, C1. Ix) is a vector, and 

IX [,8 Ix)] = (IX,8) Ix), 

1 Ix) = Ix), 

IX[lX) + Iy)] = IX Ix) + IXly), 

(C1. + ,8) Ix) = IX Ix) + ,8 Ix). 

A sum Ii IXi Ixi) with not all C1. i = 0 is called a 
linear combination of the set of vectors labeled as 
Ix;), A finite set of vectors is termed linearly dependent 
if there exists a linear combination equal to the null 
vector. If such a null linear combination does not 
exist, the set is termed linearly independent. 

If every vector of the space can be expressed as a 
linear combination of a certain set, then that set is 
said to span the space. A basis is a linearly independent 
set of nonnull vectors which spans the space: If lei) 
is a typical member of a basis, then Ix) = Ii lei)IXi for 
every vector Ix) and, by definition of a basis, the 
(C1.i)'S are uniquely detttrmined by Ix). The scalar IX; is 
called a component of the vector Ix) in the particular 
basis. 

Given one basis, other bases can be constructed. 
In fact, every linearly independent set of vectors 
may be extended into a basis by augmenting the set 
with other vectors of the space. All bases, it then 
follows, have the same number of elements. This 
number is called the dimension of the space. In this 
paper, the relevant vector spaces have finite dimension. 

Let lei) be a member of a basis. Any vector Ix) = 
Ii lei)IXi' A notation is now introduced which 
indicates explicitly that a component is a function 
of the particular basis vector and the particular 

• The treatment here, as well as that of multilinear functions later 
on, follows that ofP. R. Halmos, Finite Dimensional Vector Spaces 
(Princeton University Press, Princeton, New Jersey, 1942). 

8 The notation is based on that of P. A. M. Dirac, The Principles 
of Quantum Mechanics (Oxford University Press, London, 1947). 

vector Ix): 

so that 

Ix) = I lei)(ei I x). 
i 

Let the summation convention now be adopted 
wherein each repeated index in an expression is to be 
summed over the range of the index. Thus 

Ix) = lei)(ei I x). 

Now consider the case of an IP) which is of another 
basis: 

The bracket of two basis vectors is called a transforma­
tion amplitude. In the above equation, one may 
expand lei) in terms of Ifk): 

IP) = Ifk)(fk I ei)(ei I 1'), (1) 

which forces the conclusion 

u: I ~)(ek If') = ~1 , (2) 

with ~~ = 0 for i ~ j and ~i = I for i = j. 
The particularization of Eq. (1) to the statement 

lei) = lei)(ei lei) 
reveals that 

(ei lei) = N. (3) 

The transformation amplitude U: I ei ) serves to 
connect the components of a vector in one basis to its 
components in another: 

(fi I x) = U: I ei)(ej I x). 

The assignment of the scalar (e i I x) to every vector 
of the space is an example of a linear functional. 
Instead of the common functional notation y(x), the 
notation (y I x) is used to denote the value of the 
functional at the vector Ix). A linear functional on a 
vector space is an assignment of a scalar to every 
vector with the qualification that, if Iz) = IX lu) + 
,8 Iv), then (y I z) = IX(y I u) + ,8(y I v). A linear 
functional is completely determined by its values on a 
basis. That is, if (y lei) = C1.i and Ix) = lei ),8i' then 
(y I x) = IXi ,8i' Thus the linear functional (ei I x) is 
completely determined by Eq. (3). 

On the set of linear functionals on a vector space, 
addition and scalar multiplication may be defined by 
means of the condition that the value of a linear 
combination of functional is the linear combination 
of values. The null linear functional is the assignment 
of zero to every vector of the space. In this way, the 
set of linear functionals on a vector space itself 
becomes a vector space. The elements of this vector 
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space, called the dual vector space, are denoted by 
(ul, where the value of the functional (ul at a point Ix) 
is (u I x). A basis is evident as the set of (eil for the 
following. 

(i) The set is linearly independent: if (J.i(ei I x) = 0 
for all Ix), then, for Ix) = lei), 

o = (J.i(ei lei) = oci . 

(ii) The set spans the space, for 

(y I x) = (y I ei)(ei I x) = (J.i(ei I x). 

The two bases Ie) and (el are called dual bases; 
corresponding bdsis vectors are given the same letter 
tag with superior indices for the one case and inferior 
indices for the other. Any vector of the dual space can 
be written as (xl = (x I ei)(eil. Here the bracket 
notation has been extended to the dual space. The 
extension of the bracket symbol allows the definition 
of the bracket of two arbitrary vectors, one from each 
space: 

(x I y) = (x I ei)(ei I y). 

This definition is independent of the basis, for, by 
Eqs. (1) and (2), 

(x I y) = (x I ei)(ei I y), 

= (x I Ji)(h I ei)(ei I!k)(fk I y), 

= (x I Ji)(h I y). 

Duality is reciprocal. One may identify the dual of the 
dual as the original space. 

Previously, a theorem was quoted to the effect that 
a linearly independent set could be extended into a 
basis. ,The realization of the dual space permits an 
explicit algebraic procedure ,for this extension. In 
fact, one can extend a set in an infinite variety of ways. 
The idea is to extend the set while simultaneously con­
structing the dual basis. The sole condition is to ensure 
that (h I Ji) =-= bf on the new bases. For example, 
let 

and 
ly2

) = le2
) + le3

) 

in a 4-dimensional space with Ie) as a basis., Thus 
Iyl) and ly2) are to be two basis vectors of a new 
basis. Choose 

and 
(Yll = (ell 

(Y2! = (eat· 

This choice guarantees that (Yl I yl) = 1, (Yl I y2) = 0, 
(ysl yl) = 0, and (Y21 y2) = 1. Now choose 

Iy) = 1e3) 

and 
(Yal = (e21 + (ell - (e3 1· 

A simple choice for ly4) is 

ly4) = le4
), 

and thus 
(hi = (e4 1. 

It is true that (Yi I y i ) = bf. The problem could have 
been solved by setting (Yll = (eal - (e21, (Y21 = (e21, 
and so on. Any choice would do, provided that 
(Yi I i) = b!. The procedure works because, if 
(Yi i) = b!, the set Ii) is linearly independent as is 
the set (Yil: if 

lyi)(J.j = 0, 
then 

0= (Yi I i)(J.j = oci · 

For an n-dimensional space, the sets Ii) and (Yil need 
to contain n vectors each to complete the conditions 
for a basis. 

B. The Cartesian Identification 

A vector space and its dual are related to no more 
nor no less an extent than that defined by the condition 
(e i lei) = bl. No correspondence need be established 
between vectors of the two spaces beyond (ei lei) = bf. 
However, there does exist a particular correspondence 
which leads to the notion of an inner product and the 
notion of a Cartesian set of axes. 

One associates a vector of the space with a vector of 
the dual in a one-to-one fashion in this manner: If 
Ix) = lei)(ei I x), the Cartesian adjoint of Ix) is 
defined to be the vector in the dual space (xl = 
(ei I x)(eil· An angular semibracket is written to 
indicate the special relationship. The process is termed 
a Cartesian identification, and it is established on a 
particular basis. 

Given two vectors Ix) and Iy), there is the bracket 

(x I y) = (x I y), 

= (ei I x)(ei I y), 

= (y I x), 

which can be thought of as a bilinear function on the 
vector space. The two properties 

(x I Y) = (y I x) 
and 

(x I x) = (ei I x)(ei I x) ~ 0 

give rise to the Schwartz inequality: 

«x I y»2 ~ (x I x)(y I y). 

The bracket (x I y) is called the inner product of the 
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two vectors. The inner product, the Cartesian identi­
fication, permits the discussion of metric properties 
of the vector space. The requirements of a distance 
function are met by the inner product: if Iz) = Ix) -
Iy), then the distance between Ix) and Iy) may be 
defined as (z I z)!. The length of a vector may be 
defined as the distance between it and the null vector. 

It is of interest to relate the components of a 
Cartesian adjoint of a vector in an arbitrary basis to 
the components of the vector in that basis. Let Ig) 
be a basis for a Cartesian identification. Let Ie) be any 
basis. For any vector Ix), 

(xl == (gm I x)(gml, 
so that 

(x lei) == (gm I X)(gm lei), 

= (gm I ei)(ej I X)(gm lei), 

== gii(ej I x), 
with 

Similarly, 
(ei I x) == (x I ei)g;i 

with 
gij = gji = (ei I gm)(e; I gm). 

Note that gii and gij are elements of inverse matrices: 

giigjk = (gm I ei)(gm I i)(e j I gn)(ek I gn), 

= (gm I ei)(ek I gm), 

= l5i· 
The arrays Ilgiill and Ilgiill are called the metric 

tensors. They connect the components in a non­
Cartesian basis to the components of the adjoint. 
To go further, 

(ei lei) = gim( em lei) = gii, 

and, if the Cartesian identification had been made out 
of the dual space, then 

(ei I ej) = gij· 
Also 

(x I y) = (x I ei)<y I ei)gij. 

Bases can be grouped into classes of Cartesian 
equivalent bases. Let two bases be termed Cartesian 
equivalent if 

(ei I P) = (fj lei). 

An equivalence relation is so defined for 

(i) (e i lei) = 15: 
= (ej lei). 

(ii) If (e i IP) = (jj I ei
), then 

(fi lei) = (ej I P)· 

REFLEXIVITY 

SYMMETRY 

(iii) If (e i IP) = (jj I e') and 

U: I gi) == (gi I P), then 
(ei I gi) == (ei I fk)(fk I gi), 

= (gi I fk)(fk lei), 

= (gi lei). TRANSITIVITY 

If Ie) and If) are Cartesian equivalent, then the 
metric tensor of the Ie) basis with If) identified as 
Cartesian is 

gii = (f m I ei)(f m lei), 

= (ei Ifm)(fml e;), 

= t5/. 
The metric tensor is unity. Conversely, if the metric 
tensor is unity, then 

(jj lei) = gik(ek I P) = (e; I Ji). 
The metric tensor of any other basis is independent 

of the choice of Cartesian equivalent bases: If Ie) and 
If) are Cartesian equivalent, then 

(em I hi)(em I hi) = (em Ifk)(fk I hi)(em I hi), 

= (fk I em)(em I hj)(h.1 hi), 

= (fk I hi)(fk I hi). 

For an element of a Cartesian basis, 

(gil = (gil 

and thus (gi I gi) = l5 ii . The basis, identified with its 
dual via the Cartesian identification, is the model of an 
orthogonal system of unit vectors. Any Cartesian 
equivalent basis forms a similar orthonormal frame­
work. 

I. DIFFERENTIAL FORMS 

A. Tangent and Cotangent Space 

Coordinate space is simply the space of ordered 
n-tuples (xl, X2, ... ,xn ), where the Xi are real 
numbers. Enough of a metric is introduced to allow 
the definition of the derivative. Consider the set of all 
real-valued functions of the n real variables, which are 
as continuous and differentiable as are needed. (At any 
particular point, each function considered shall have a 
Taylor series convergent in some neighborhood of the 
point.) Let two functions be termed equivalent at a 
point in the coordinate space if their first-order 
partial derivatives are equal, one for one, at that 
point, 

at the point (x~, x~, ... , x~). This condition certainly 
defines an equivalence relation. Let the class of all 
functions equivalent to the function f at a point be 
labeled as Idf). The set of equivalence classes can be 
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made into a vector space: Let the sum of two classes 
be the class of the sum of a function from one class 
and a function from the other. More generally, let 

IX Idf) + fJ Idg) = Id[lXf + fJgD. 

This definition of linear combination is independent 
of the choice of functions taken from the classes. 
The null class is the class of all functions whose 
first-order partial derivatives vanish at the point. A 
basis can be found, for, by Taylor's theorem, 

f(x) =f(xo) + ~ of. 1 (Xi - x~) + ... , 
i OX' 0 

so that 

where Idxi) is the class of all functions for which the 
ith derivative is unity and all others are zero at the 
point-the class of the function Xi - x~. This vector 
space is called the cotangent space at the point aNd it 
is n-dimensional in an n-dimensional coordinate 
space. 

The basis dual to Idx) is written, in accord with the 
convention of the previous section, as (dxl. That is, 

(dx; I dxi) = 151. 
Furthermore, 

(dx; I df) = of/axi. 

The dual space is called the tangent space at that point. 
A vector of the cotangent space, a linear combination 

Iu) = Idxi)ui> 

is called a linear differential form. A vector of the 
tangent space retains the title of vector. 

Consider now a coordinate transformation viewed 
as either a mapping of the coordinate space onto 
itself or a relabeling of the point via the n functions 
ui = ui(x). The transformation is to be one-to-one: 
no two distinguishable points are to be transformed 
into a single point. This means that the set of Idui) 
is not dependent. If it were, one could select an 
independent subset, say (ldu1), ••• ,Iduk», and one 
could certainly find a vector (t5xl = t5xi (dxil such that 

(t5xldui)=O for j= I,···,k. 

It would then be true, because of the dependence, that 
(t5x I dui) = 0 for j = 1, ... , n. Thus, in a neighbor­
hood of the point, 

t5ui = t5xi(oui faxi) = 0, 

contrary to the stipulation that the coordinate trans­
formation be one-to-one. Therefore, for a one-to­
one coordinate transformation, the set of Idui) is a 

linearly independent set and can be chosen as a basis. 
The consequent expansion, 

Idxi) = Idui)(dui I dxi), 

indicates the local behavior of the Xi as functions of 
the u: 

OXi/OUi = (duJ I dxi). 

The transformation amplitude relations 

and 
(dXi I duk)(duk I dxi ) = 15/ 

(dXi I df) = (dXi I dui)(dui I df) 

are seen to be the familiar statements 

and 
of _ ou i oj 
oxi - oxi ou i . 

B. Exterior Algebra 

Although differential forms were introduced via the 
classes 

Idf) = I dxi)(af/axi), 

it is not true that every differential form Iv) can be 
expressed as Iv) = Idf) for some class of functions. 
Alternatively, while it is true that 

(dXi I df) = oflaxi, 

it is not true that, for any basis (ul, (u i I dt) is the 
partial derivative of f with respect to some variable. 
The testing of either Iv) = Idf) or (ui I df) = oJ 
would involve successive partial derivatives, a multi­
plicative process. To handle such questions it is 
necessary to build a hierarchy of higher forms and 
vectors. This can be done by the consideration of 
multilinear functionals on a vector space. 

A multilinear functional on a vector space of 
degree k is a scalar-valued function of k vectors which 
is linear in each of the arguments. A linear functional 
is of degree one. As with linear functionals, the set of 
all multilinear functionals of degree k can be made 
into a vector space. 

An alternating multilinear functional of degree k 
has the added property that it vanishes if two of the 
arguments are equal. It then follows that it changes 
sign if two of the arguments are interchanged. It 
follows also that it vanishes on a dependent set. The 
alternating property does not affect either the linearity 
or the feasibility of construction of a vector space of 
alternating multilinear functionals. 

Let Ie) be a basis for the vector space. A selection of 
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k basis vectors as arguments of a k-degree alternating 
functional is nontrivial only if the vectors be different. 
The order may as well be a standard one. A block 
index notation can be used whereby leA) indicates a 
selection of the k basis vectors; the numerical word A 
is formed of the k different single-index numerals 
arranged in ascending order from left to right. 
The manipulation of block indices is facilitated by the 
use of the symbol E~, which is zero-unless the index 
A, as a single properly ordered word, is equal to the 
index D, a single properly ordered word. For equal 
words, the symbol has the value unity. The symbol 
E~~ is zero-unless, while the letters in A and Dare 
distinct and the letters in C and D are distinct, the 
single word AB is equal to some permutation of the 
word CD. For an even permutation, the value is +1 
for an odd permutation the value is -1. The defini­
tions allow the theorems: 

A BO BO 
ED~A = EDE' 
BO DE EBDE 

EA EO = A 

An alternating multilinear functional of degree k is 
defined everywhere if it is defined on the set leA), for 

(u I x 2
, x2 

••• ) = (u I eA)E~i'" (ei I xl)(e j I x2
) •••• 

Therefore, a basis for the vector space of k-degree 
alternating functionals is the set (eAI where 

(eA I eB
) = E~. 

The space has the dimension n!lk! (n - k)!, wherenis 
the dimension of the vector space. Clearly, a dual 
basis is the set leA). 

Thus, from a vector space of dimension n with basis 
of lei) and with dual basis of (eil, a ladder of vector 
spaces can be constructed for 0 :::;; k :::;; n, with each 
being of dimension n!jk! (n - k)! and with bases and 
duals represented by leA) and (eAI. (If k = 0, the 
vector space is the space of scalars. In no case is k 
greater than n because no linearly independent set can 
contain more than n vectors.) A total vector space can 
be taken as the direct sum of all the vector spaces. 

In the context of differential forms, the scalars, 
I-forms, 2-forms, up to n-forms, are in correspond­
ence with scalars, I-vectors, 2-vectors, and so on. 
The process of the creation of higher vectors and 
forms can be thought of and handled as a process of 
multiplication-exterior multiplication. The exterior 
product of two basis I-forms Idxi

) and Idxi ) is defined 
by 

Idxi dx i
) = IdxA)E1· 

This being done, the exterior product of a p-form basis 
vector and a q-form basis vector is defined as the 

(p + q)-form 

IdxA) IdxB) = IdxA dxB) = Idxo)E~B. 
The exterior product is to be linear in all the factors 
so that the exterior product of a p-form and a q-form 
is the (p + q)-form: 

lu) Iv) = luv) = IdxA)E~O(dxB I u)(dxo I v). 

Similarly, a p-vector and a q-vector can be multiplied 
to give a (p + q)-vector: 

(ul (vi = (uvl = (u I dxA)(v I dxB)E~B(dxol· 
How do higher forms transform under a coordinate 

transformation? Let ui = ui(x) be the new coordinates. 
Then 

But 
Idu i du

j
) = Id~)EA"(dxm I dui)(dx" I dui

). 

Therefore, 

(dXB I dUA)E~ = E;;"(dxm I dui)(dx" I dui
). (4) 

Going up the ladder, for n-forms, therefore, 

Idu) = Idx)(dx I du) 

(where no index symbol is used to represent the word 1, 
2,3, ... ,n). The transformation amplitude (dx I du) 
is called the determinant of the matrix II (dx j I du') II. 

Now: higher forms can be built out oflower forms, 
so that 

IduA duB) = Idu)EAB, 

where A is a k-word, B is an (n - k)-word. Therefore, 

(dx I dU)EAB = (dx I duA duB) 

= EOD(dxO I duA)(dxD I duB). (5) 

The matrix \I (dXB I duA ) 1\ , where A and Bare k-words, 
is called the kth compound of the matrix II (dx j I dui ) \I. 
Equations (4) and (5) indicate that the elements of the 
kth compound are the determinants formed from 
submatrices of order k. Equation (5) is an expression 
of the Laplace expansion of a determinant. 

C. Exterior Derivation 

The I-form Idf) can be thought of as the creation of 
a I-form from a O-form f by a process of derivation. 
Based on 

(6) 

the exterior derivative of a k-form can be defined 
recursively as a linear operation which transforms a 
k-form into a (k + I)-form via 

diu dv) = Idu dv). 
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The definition implies that d Idv) == 0, setting U = 1. Now, set 
Because of linearity and Eq. (6), it follows that, in any 0 XiXi 
coordinate system, f(x) = x'u i 10 + - Uij 10 + ... 

dIu) = Idu) = d[ldxA)(dxAI u)], 

= Idxi dxA) ~ (dXAI u), 
ax' 

= IdxB)ei;..!.(dxAI u). 
ax' 

If lu) is a p-form and Iv) a q-form, then 

luv) = (-I)pq Ivu) 
and 

dluv) = Idu)v + (-I)pq Idv) Iu). 

The exterior derivative of a O-form, a scalar function, 
is a I-form; but not every I-form is the exterior 
derivative of a function. If Iu) = /df), then certainly 
it is necessary that diu) = o. This is also a sufficient 
condition: If, in the neighborhood of a point at which 
it does not vanish identically, d /u) = 0 for a I-form 
lu), then there exists a functionfsuch that/u) = Idf). 
The proof presented here consists of the construction 
of the Taylor series for the function! Let the point in 
question be taken as the origin and let 

lu) = Idxi)Ui · 

The condition Idu) = 0 becomes 

o = /dxi dUi)' 

= Idxi dxi)(dxi I dUi), 

which implies that 

(dxj I dUi) = (dXi I dUj). 
Let 

so that 
Idui) = Idxi)uJi. 

Taking the derivative, 

o =Idx; dxk)(dxk 1 dUii)· 

This implies that 

(dXk 1 dU;i) = (dx; I dUki), 

which, when combined with the previously proven 
symmetry, demands that 

um = (dx; 1 dU;k) 

be fully symmetric in all its indices. Clearly, one goes 
on to construct 

ui; 00 on = (dXi 1 du; 0 0 on), 

which is fully symmetric. 

2! 
XiXi . .. xn 

+ Uii · .. n /0 + ... , 
n! 

where Uii . 0 0 nlo is uij .. 0 n evaluated at the origin. 
Taking the derivative, we find that 

/df) = Idxi)Ui 10 + Idxi)XiUii 10 + ... 
Idxi)Xi . .. xn + Uij ... n 10 + .... 

(n - I)! 

The full symmetry of Uij 0 0 • n has been of essential use. 
Going on we find that 

But the series in the bracket is ulx). Therefore, 

Idf) = Idxi)Ui = lu). 

Of course,fis indeterminate to an additional constant. 

D. Surfaces 

An m-dimensional surface in an n-dimensional 
coordinate space, with m < n, is the mapping of an 
m-dimensional space into the n-dimensional space 
via Xi = Xi(t I , t 2 , ••• , tm). The parameters (t I , ••• , tm) 
are the coordinate variables on the surface. Associated 
with this mapping is the mapping of the differential 
forms: 

Idxi) = Idti)(dtj I dxi
), 

= Idti)(Ox i loti). (7) 

The use of the equality sign in the above relation 
requires some explanation or qualification. Clearly, 
in the m-dimensional cotangent space spanned by 
the Idti), the full set of n Idxi) cannot be independent. 
There must be (n - m) independent combinations of 
the Idxi ) which vanish, and this contradicts the funda­
mental fact that the Idxi)'S form an independent set. 
The matter can be resolved by the concept of a 
quotient space. 

Let Iz) be a vector in a vector space. Two vectors of 
the space are defined to be equivalent if their difference 
is a multiple of Iz). The set of classes resulting from 
this equivalence relation can easily be made into a 
vector space. So easily can this be done that it is not 
worth while to change the notation; thus the new 
vectors are usually represented by the same symbols 
as the vectors of the original space. The original 



                                                                                                                                    

DYNAMICAL CONTENT OF DIFFERENTIAL GEOMETRY 2383 

vector space has been reduced by the imposition of 
addition modulo Iz). In effect, Iz) = O. The new vector 
space is called the quotient space of the original with 
respect to Iz). The procedure can be generalized for 
the case of a quotient space with respect to the vector 
space spanned by a set of vectors. Addition is modulo 
any linear combination of the selected vectors. In 
effect, each vector selected is equal to the null vector. 

A more cautious way, then, of defining a surface 
would be to have a proper coordinate transformation 
Xi = Xi(tl, ••• ,tn), and then to define the surface 
cotangent space as the quotient space with respect 
to the set IdtmH), •.• , Idt n). Equation (7) would be 
written as 

Idxi) = Idti)(dfJ I dxi) and mod Idtm+1), ••• , Idt"). 

The apparent linear dependence would be resolved by 
statements such as 

IdxJ)aj = 0 mod IdtmH), ••• , Idt"). 

This is the same as saying that 

IdxJ)aJ = IdtmH)b1 + ... + Idtn)bn · 

One need not take so cautious an approach. Given 
only the limited coordinate transformation Xi = 
Xi (t 1, ••• , tm ), one can find the unmentioned func­
tions tmH, .•• , tn. 

The n - m differential forms which vanish in the 
quotient space lie in the extension of the set of Idt i

), 

i = 1, ... , m. That is, if luk ) be such a form, then 

(dt i I Uk) = 0 and i = 1, ... , m, (8) 

where (dtil is calculable as 

(dtil = (dti I dxJ)(dxfl. 
Now, 

(dti dtj I dUk) = (dt; I d(dt; I Uk» - (dtJ I d(dti I Uk», 

with both i and j in the range (1, ... , m). Because of 
Eq. (8), therefore, 

(dtidtJ I duk ) = 0, for i,j = 1,··· , m. 

It follows that 

(9) 

where Iw~) is some I-form. Thus, in the space of 2-
forms built on the quotient space with respect to the 
luk), we see that Iduk

) = O. 
In general we find that 

lu k
) = Idxi)U~. 

The set of luk ) can be replaced by a set of I-forms of a 
certain standard form. Consider the set of (n - m) + 
n forms 

lUI), lu2), ••• , lun- m), Idx1), ••• , Idx"). 

This set certainly spans the cotangent space and is 
certainly a linearly dependent set. Proceeding from 
left to right, successively strike out those Idxi)'S which 
are linear combinations of the preceding Idx) and of 
the set of lu)'s. In this way, a basis, an independent 
set which spans the space, will be found consisting 
of the full set of (n - m) lu) and m of the Idx). Let the 
forms which were stricken from the list be labeled as 
Idzi) where i = I, ... , n - m. Let the remaining ones 
be labeled as Idxi

) where i = I, ... , m. Then 

(10) 

Certainly, if each luk
) does not vanish at the point in 

question, the matrix II (J;~ II possesses an inverse: 

Let 

IVi) = IUk)(J;~. 

Taking the exterior derivative, 

Idvi) = Iduk)(J;~ - luk d(J;k), 

= lumw~)(J;~ - lu k d(J;~), 

= Iv;tS';nw~)(J;~ - IvJtS'~ d(J;~), 

I J - i) = V w J • 

This is the same sort of equation as was Eq. (9). The 
quotient space with respect to the set of IVi)'S is 
identical to that with respect to the set of lui)'s and, 
furthermore, 

Idvi) = 0 mod Iv1), ••• , Ivm). 

Equation (10) can be written a~ 

Idzi) = Ivi
) + IAi), 

with 

IAi) = Idxk)A~. 

Taking the exterior derivative, 

On the quotient space, therefore, 

IdAi) = 0 mod Iv1), •••• 

(11) 

The meaning of this last statement is this: While it is 
true that d Idzi

) = 0 when Idzi
) is considered as a 

I-form in the full n-dimensional cotangent space, only 
because Idvi) = 0 mod Iv1), ••• does the exterior 
derivative of Idzi

) vanish when Idzi) is considered as a 
I-form in the m-dimensional cotangent space. That is, 
the set of equations 

(12) 

can be solved in the same manner as the equation 
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Idf) = lu) of the previous section was solved. This 
yields 

(13) 

where the ci , m in number, are integration constants. 
The solution, Eq. (13), is such that 

ozijoxk = A.~, 

as was demanded by Eq. (12). The key point is that the 
integration constants, ci

, can be taken as the unmen­
tioned coordinates-which are indeed constants on the 
surface. Treatment of the (ci)'s as coordinates in 
Eq. (13) takes the Idzi

) out of the surface cotangent 
space via 

Idi) = Idxk)A.~ + Idck) OZi , 
oCk 

where the invertibility of II OZi lOCi II is guaranteed by 
the independence of the set of Idzi) and Idxi

). If this 
expression is put into Eq. (II) we find that 

Ivi) = Idz i
) - 12i

), 

= Idci)(rJziloci )· 

And, finally, we see that 

with 

lUi) = Idci)(azkloci){J~, 
lUi) = Idc;)p~ 

IIp;1I = lI(ozklocj){J;II, 

an invertible matrix. 
The essential condition is given by Eq. (9). Given any 

independent set of I-forms, k in number, with each 

Idui
) = IUiW~), 

then there exist functions ci and an invertible matrix of 
functions IIp111 such that 

lUi) = Idcl)p~. 

This is the theorem of Frobenius. There are other 
conditions equivalent to Eq. (9) which are stated here 
without proof. 

(i) If I U) = IUlU2 ••• Uk), then lUi dU) = 0 for all 
values of i. 

(ii) IdU) = I UO). 

An important case is that of k = n - 1. Any 
linearly independent set of (n - 1) I-forms in an 
n-dimensional space will satisfy the conditions of 
Frobenius' theorem. 

Frobenius' theorem is part of the theory of inte­
grating factors, and it is perhaps worthwhile to follow 
the steps of the proof in the simple classic example: 

In 2-dimensional space, let 

lu) = - Y Idx) + x Idy) where x yl: O. 

This is the forced situation. Explicitly, 

Idu) = 2 Idx dy) 

= (2Ix) Idx) lu). 

The list-striking process results in 

Idy) = X-I lu) + (ylx) Idx), 

so the standard form is 

Iv) = X-I lu) = -(Ylx) Idx) + Idy). 

On the quotient space with respect to Iv), 

Idy) = (ylx) Idx) or y = cx, 
so that 

Iv) = x Idc) 

=Xld~), 
and 

E. Metric Definitions 

Let a k-dimensional surface in an n-dimensional 
space be defined via Xi = xi(tl, ... , tk). There is the 
associated mapping of I-vectors: 

(dtil = (dti I dxi)(dxjl· 

That is, even on the k-dimensional tangent space, one 
may refer, as it were, to the full n-dimensional tangent 
space. In the k-dimensional tangent space, the 
maximum vector is the k-vector: 

(dtl ..• dtkl = (dtl = (dt I dx"')(dx.4.l. 
One may establish a Cartesian identification common 
to tangent spaces of every degree. Let (dxil be the 
chosen Cartesian system for I-vectors. Then (dXAI, 
where A is a k-word, is taken to be the Cartesian 
system for k-vectors. A unified metric is effected. 
On a k-dimensional tangent space spanned by (dtil, 
the k-dimensional volume element appropriate to the 
t coordinate system is defined to be 

(dt I dt)t = [edt I dxA)(dt I dxA)]t. 
For example, the n-dimensional volume element is 

(dt I dx) = [det IIgiilllt , 
with 

gu = (dti I dxk)(dt; I dxk
). 

The I-dimensional volume element, the element of 
length, is then 

and so on. 
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m. KINEMATICS so that the tangent vector 
A. Coordinate Systems 

Given a 3-dimensional coordinate space, a trajectory ox' at 
is determined by a vector field, a continuum of or 
tangent vectors defined at each point of the space. 

(dtl = (dt I dxi)(~·1 + (dt I dt)(!l 

(dtl = vi(~.l + (!). Let Xi be the coordinates and let 

(dtl == (dt I dxi)(dxil 

be the vector field. The equation of the trajectory is 
obtained by the integration of the equations 

dxifdt = (dt I dxi ) = Vi. (14) 

In this paper, the components of the tangent vector 
will be functions of the space coordinates alone: 

Vi = vi(x). 
Equations (14) certainly can be integrated-at least 
in the neighborhood of a point. In fact, a formal 
solution can be written: 

so that 

where, in the exponent, the differential operator acts 
on the coordinates Xi (0). 

So far, t is simply the parameter of the trajectory. 
Consider now an extension of the 3-space into a 
3 + 1 space with coordinates (x, t). At every point, 
a 4-dimensional cotangent space can be attached so 
that, if 1== I(x, t), 

Id/) = Idxi)(offoxi) + Idt)(ol/ot). 

[From now on, the partial derivative symbol will 
apply to the (x, t) set of coordinates alone.] 

The I-forms Idxi) and Idt) form a basis. Let the dual 
basis be represented as (a/axil and (a/at I so that 

(~! dx;) = M oxi " (:t I dX;) = 0, 

(O~i! dt) = 0, (:tldt) = 1. 

and 

(O~i I df ) 
of 

= oxi ' e-I df ) =?t. at at 

Note that (a/at I is not (dtl, the tangent vector which 
defines the trajectory. The trajectory, as a mapping of 
a I-dimensional space onto the (3 + I)-dimensional 
space, is defined by 

t == t, Xi = Xi(t), 

ax' at 
(15) 

As a differential operator, (dtl d is the total derivation 
with respect to t, time: 

I . i of of 
(dt df) = I = v -. + - . 

ax' at 

In fluid mechanics, this expression is referred to as the 
co moving derivative. 

This extension of the 3-space into a 3 + I space, 
the transition from geometry to kinematics, is not 
merely a matter of elegant display. Concealed here is a 
premise involving the existence of a standard trajectory 
in 3-space to which the position of any other point 
traveling in space is correlated. It is the purpose of 
mechanics to determine the position of a point as a 
function of distance travelled by the standard point 
along the standard trajectory. The function is the set 
of ordered pairs (x, t), among which no value of t is 
repeated; and the velocity of a point is the limiting 
ratio of the difference in its positions to the difference 
in the associated positions of the standard point. The 
standard trajectory appears to be that traced by a light 
ray and so, by definition, the velocity of light is unity. 
The time axis must be laid down as a straight line or, 
in terms of this paper, Idt) must be taken as one of a 
Cartesian basis in 4-dimensional cotangent space. 
The question arises concerning the other Cartesian 
axes, the spatial axes. Setting aside their determination 
for the moment, consider the meaning of a rotation 
of. the four Cartesian axes. The time axis is changed 
but, as distance is preserved under the conditions of a 
rotation, the unit of time is preserved: the velocity of 
light is still unity. In the original Cartesian frame, a 
point at rest in space is seen as a straight line parallel 
to the time axis. With respect to the rotated axes that 
line is not parallel to the time axis, but it is straight 
and represents motion with uniform velocity: The 
preservation of 4-dimensional distance, Cartesian 
distance, is the basis for the constancy of the velocity 
of light in 3-dimensional frames moving with uniform 
velocity with respect to one another. 

Concerning the choice of the Cartesian space axes: 
are the Idxi)'s suitable? Should a Cartesian identifica­
tion be established on the 

[ (O~i \. (~IJ and [ldx
i
), Idt)] 
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bases? A trajectory in the (x, t) frame is not necessarily 
a straight line. Differentially, the trajectory is a 
quotient space in which 

Idx) - v Idt) = O. 

(For purposes of illustration let there be only one 
spatial dimension.) Let a rotated set of axes be 

Idz) = c Idx) + s Idt) 
and 

Idr) = -s Idx) + c Idt). 

On the trajectory, we find that 

so that 

Idz) = (cv + s) Idt), 

Idr) = (-sv + c) Idt), 

(-sv + c) Idz) - (cv + s) Idr) = O. 

The new velocity is 

cv + s/-sv + c, 

which in no way introduces or preserves simplicity of 
description. There is, however, a coordinate system in 
which the trajectory is described simply, and this 
simplicity is preserved under rotation. In this co­
ordinate system the trajectory is a straight line-a 
straight line in all Cartesian equivalent systems-and 
the motion is described simply as that of uniform 
velocity, velocity which can be anything from zero to 
unity in magnitude, the particular magnitude and 
direction being but the label of the particular set of 
Cartesian axes. The system is discovered in the 
following way. 

The trajectory is a I-dimensional surface. The 
'cotangent at each point should be a quotient space 
with respect to three independent I-forms. Consider 
the set 

(16) 

In the quotient space with respect to these I-forms, 

Idxi) = Vi Idt), [mod lai)], 

which is an expression of the differential equations of 
the trajectory. Another expression of the situation is 

(dt I a') = O. 

Now, the set lai ) is an independent set, for 

10'10'20'3) = 10') = Idx) - EiAVi IdxA dt). 

Clearly 10') does not vanish, and so the set lai) is 
independent. Here then is the forced situation for the 
application of Frobenius's theorem-three independ­
ent forms in a 4-dimensional space. There must exist 
three independent functions Xi = Xi(X, t) such that 

(17) 

where the p; are certain functions. The inverse 
relation is 

with 
ki_ ki_ " 

Piqk - qiPk - b;. 

The following bracket relations hold: 

Define 

so that 

(dt I ai
) = 0, 

(dt I dx;) = O. 

(dXi I dt) = 0, 

(dXi I dxi
) = p~(O/OXk I am)q:" 

= bf· 

(18) 

(19) 

(20) 

This confusion of forms and vectors can be relieved 
somewhat by grouping into bases. Firstly, there is the 
[Idx i

), Idt)] basis with dual [(a/axil, (%tl]. Secondly, 
there is the [I ai

) , Idt)] basis with dual [(a/axil, (dtl]. 
Thirdly, there is the [Idxi), Idt)] basis with dual 
[(dxil, (dtll The relevant transformation functions are 

(%xi I dx i
) = bf, (%xi I dt) = 0, 

(%xi I dxi
) = qf, (dx; I dx i

) = pf· (21) 

A trajectory is the curve X = constant, a straight 
line in the (x, t) system. In that system the velocity 
is zero. If the (x, t) system is rotated-that is, in a 
frame Cartesian equivalent to the (x, t) frame-the 
velocity is constant along a trajectory. What better 
way is there to find a Cartesian system? It is the system 
laid out by the moving point; it is the system in which, 
by its very definition, the point is undisturbed and 
moves with constant velocity. It is the inertial system 
and all systems Cartesian equivalent to it are co­
inertial systems. 

B. Kinematical Equations 

With a Cartesian identification established on the 
basis of [(dxil. (dtl], how are measurements effected in 
the lived-in system, the 

system? A measurement of spatial distance is accom­
plished by a small displacement bxi developed by the 
tangent vector 
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There is no time change: 

ot = (os I dt) = 0. 

The square of the element of length is 

Alternatively, 

Idp) + P Iw) = 0, 

Idq) - Iw)q = 0. 

2387 

(31) 

(32) 

(os I dXi)(OS I dxi) + (os I dt)(os I dt) To obtain the variation of the velocity, begin with 

v = vqp. = (os I al)(os I a')q~q~, 
Take the derivative: 

with 

YH = q;"q'!' = YH' (23) 

A measurement of the time interval is accomplished or 
via the tangent vector 

Idv) = Idvq)p + vq Idp) 

= Idvq)p - vqp Iw) 

Idv) + v Iw) = Idvq)p. (33) 

(osl = ot (%tl. 

The square of the length of the time interval is 
calculated to be equal to 

Equation (33) is the inhomogeneous associate of the 
homogeneous Eq. (31). Let 

(01)2(1 + viviyU)' (24) so that 
Ip) = Idvq)p, 

Idv) + v Iw) = Ip). 

(34) 

(35) 
The volume element is given by 

(a/ox I dx) = Y, 
with 

(25) 

(26) 

No special property of v has been used in the deriva­
tion of Eq. (35). By the defining equation [Eq. (16)]: 

det IIYiill = y2. 

The inverse of IIYul1 is 

yii = pi",p~ = yii. (27) 

The tensor IIYul1 appears as the relevant metric 
tensor for spatial measurements. Its variation is 
revealed by its exterior derivative-as is the variation 

Ida) = -Idv dt) 

= v Iw dt) - I pdt), 
and because 

Ida) = law) 

= Idxw) - v Idtw), 
therefore 

of any quantity. The development of a set of equations or 
of variation can begin with 

v Iw dt) - Ip dt) = Idxw) - v Idtw) 

Idxw) = -Ip dt). 
Idai) = -Idx') IdpD, 

which is reducible, by Eq. (18), to 

with 

because 

so that 

Idai) = -Id')q~ IdpD 

= Id'w~) (28) 

(29) 

The (~ :t I component of the last equation is 

(~ §..I dXW) = - (~ §..I pdt) , 
ox ot ox ot 

(a/at I w) = -(a/ox I p). 
However, 

ovjot = (%t I dv) = 0, 

and so the (a/at I component of Eq. (35) is 

v(%t I w) = (a/at I p). 

(30) This, combined with Eq. (36), reveals that 

(a/at I p) + v(%x I p) = 0, 

(dt I p) = 0. 

It is not always necessary to show the indices in an 
expression. With the understanding that summation or 
occurs whenever an upper index is to the left of a 
lower index, the formulas can be written with sup­
pressed indices as The converse of Eq. (34) is 

qp = pq = 1, 

Ida) = law), Therefore, 
Idvq) = Ip)q. 

Iw) = -q Idp) = Idq)p. (dt I dvq) = d/dt(vq) = O. 

(36) 

(37) 

(38) 
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Along a trajectory, vq is a constant. Its square is or 
also a constant: 

viq;vkqi = ViVkY'k = const. 

It is convenient to define 
Idxi dt) o~ + Idxi dt) ani + Idx' dx') on,' = o. 

ox' at ax 

(39) From that two sets of equations are obtained: 

so that oTIJaxi = aTIi/OXi (47) 
(40) and 

The exterior derivative of II "Iii II follows easily from 
its definition in terms of IIq~ II : 

Idy;;) = IW~)Ykl + IW~)Yki' (41) 
Therefore 

Id~i) = Idvi)Yii + Vi IdYii) 

= IwD~k + Ipi)Yii' 

From Eqs. (35) and (42), 

Idv~) = 2Ip);, 

and it is confirmed that 

(dt I dv~) = 2(dt I p); 

= o. 
C. Dynamical Equations 

(42) 

(43) 

A Cartesian coordinate system has been chosen, the 
(x, t) system. What is needed now is a function i 
such that (x, i) can be used as a 4-dimensional co­
ordinate system. Curves of constant x in the (x, t) 
system are not necessarily parallel to the t-axis, nor 
are they necessarily straight lines. i is to serve as the 
variable coordinate along curves of constant x. It is to 
be a function of (x, t) so that 

Idi) = Idt)H - Idxi)TI i , (44) 

where Hand 11 are as yet undetermined. By stipula­
tion, 

and therefore, 

The I-vectors 

(di I dx') = 0, 

(dil = I/H (a/otl. 

(dx·1 = (~I + TI'(EI • ox· H ot 
satisfy the conditions 

(dx. I di) = 0 
and 

(dXi I dx') = fJ!. 

(45) 

(46) 

A new I-form basis and dual is that of [ldxi), Idi) and 
[(dx,l, (di/]. 

That Eq. (44) is truly an expression of an exterior 
derivative is certified by 

dldi) = 0, 

(48) 

The equations of motion are contained in Eqs. (47) 
and (48). It remains to be shown that the motion is 
determined by the metric tensor of the (x, i) system. 

Because 

Thus 

or 

Idxi) = Idt)vi + Idx')p~, 
(dxil = vi(dtl + p;(dxil. 

li = (dxi I dx'), 

= vV + p!np:", 

gii = ViVi + "Iii. 
By the definition, Eq. (44), 

(dil = H(dtl - TI. (dxil, 
so that 

gOi = (df I dxi ) 

= Hvi - gilTIi' 
and 

gOO = (dt I df) 

= H2 - HvTI - gOiTI i • 

From Eq. (50), 

gOiTIi = HvTI - giiTIiTI" 
so that 

gOO = H2 - 2gOiTIi - gi'TIiTI, . 

(49) 

(50) 

The relation of inverse metric tensors implies that 

gikgkO + giOgoo = 0, 
so that 

Let 

Then 

and 

gOO = H2 + 2giiAiTIi - giiTIiTI, 

(51) 

(52) 

= H2 - gH(TI i - Ai)(TI, - A,) + gHAiAJ' 

From Eq. (52) 

giiAiA, = -gOiAi 
= - CgO'giO)/gOO 

= - (1 - gOOgoo)/goo 
= gOO - l/goo , 
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where, again, the relation of inverse metric tensors 
has been used. Thus 

gOO = H2 - gH(TI, - A,)(TI I - A;) - l/goo + gOO 

or 
H2 = l/goo + giJ(TI, - Ai)(TI; - A;). (53) 

Going on to the lower index metric tensor, 

so that 

Therefore, 

or 

(dil == l/H (a/at) 

= l/H (dt) - vi/H (%x'i 

= l/H(dtJ - vq/H(dxl, 

Idi) = Idt)l/H - Idx;)Viq~/H 

= Idt)l/H - I(J)~/H. 

goo = (di I dt) 

= ljH2 + v~jH2, 

Going on, 

gOi = (dx, I df) 

= (dx, I dt)l/H - (dx; I (Jk)~k/H. 
Because 

(dXi I df) = 0, 

it follows from Eq. (44) that 

(dx, I dt) = TIi/H , 
and so 

go, = TI i jH2 - ~JH + V~lli/H2. 
By Eqs. (54) and (51), this becomes 

~ == Hgoo(TI - A) 
Finally, 

so that 

and 

(dx, I = (ojoxil + ll,/H (a/at I 
= (a/axil + lli(dil, 

gil == Yi; - ~;ll,/H + gOillj, 

(54) 

(55) 

(56) 

which, combined with previously derived relations, 
becomes 

gij = Yii - ~i~;/H2goo + gooA,A;. (57) 

D. Equations of Motion 

The equations of motion can now be given explicitly 
in terms of the metric tensor and the various dynam­
ical variables which are connected by the metric 
tensors. To repeat Eq. (48), 

ani/at = -oR/oxi
• 

From Eq. (53), 

or 

Before going on to an interpretation of the last 
equation, let us consider the case of (x, i) being 
Cartesian. In that case, 

gil = bi ;, gij = bt;, 

gOO = 1, goo = 1, 

A, =0. 

Equation (58) states that TI is constant along the 
trajectory. The general conIlection between v and II 
can be derived from Eqs. (50) and (52): 

(59) 

which in this special case of Cartesian equivalence 
reduces to 

Therefore, Eq. (53) reduces to 

or 

so that 

and 

H2 = 1/(1 - v2), 

n == v/(l - V2)!, 

~ = v/(l - v2
). 
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How are measurements effected in this case? 
The tensor IIYiill reduces to 

Y ii = c5ii + ViVi j(1 - v2) 

and so Eq. (22), the square of the element of length, 
becomes 

(c5X)2 + (vc5x)2J(l - v2). 

For a measurement perpendicular to the velocity 
vc5x = 0, the length is calculable as bx; for a measure­
ment along the velocity, (VbX)2 = v2(bx)2, the length 
is calculable as bx(l - V2)-t. The interpretation is 
this: In the. x-system a spatial distance is always 
measured as c5x-the world is seen as Cartesian. For 
two points moving along parallel paths having equal 
speeds and with the line connecting them being 
perpendicular to the path, the measured separation 
is the same as the one for stationary points. However, 
for two points moving one behind the other along a 
common path with equal speeds, the measured separa­
tion is (1 - V2)t times the separation of a similar set 
of points at rest. This, of course, is an expression of 
the Lorentz contraction. 

In the Cartesian case, the element of time interval, 
Eq. (24), reduces to bt(l - V2)-t. If a ticking clock is 
attached to the point on the trajectory, the time 
between ticks is longer than the time between ticks of a 
stationary clock by a factor of (1 - V2)-t. This, of 
co.urse, is an expression of the relativistic time dilation. 

It is a matter of rotating a coordinate system to 
bring the differential equations, now immediately 
integrable, into the familiar Lorentz transformation 
form. For a single spatial dimension, 

and so 
q = p-l = Y = (1 - v2)-k, 

x = y(x - vt), 

i = yet - vx). 

In terms of & rotation through a real angle whose sine 
is equal to V,4 

x = (1 - V2)tx + vt, 

i = -vx + (1 - V2)tt. 

E. Newtonian Approximatioll 

By means of Eq. (58), the forces responsible for 
deviation from constant velocity are deriveable from 
the metric tensor. The last term from the right-hand 
side of Eq. (58), 

1 agik 
- - --. (lli - Aj)(llk - Ak), 

2H ax' 
• One of the stimulants for this work was the observation that if 

x' - t' = x' - t', then x' + (' = x' + t·. 

is the type of force which appears in the expression for 
acceleration in nonrectangular coordinates. To see 
that this is so, one must play havoc with the theory of 
this paper. Newtonia.n kinematics is no more than 
3-dimensional geometry with time being merely a 
parameter which is in no way correctly incorporated 
into a proper 4-dimensional formalism. Thus, in the 
plane, the conversion from rectangular coordinates­
they may as well be rectangular-to polar coordinates 
is a time-independent transformation: 

x = r cos 0, 

y = r sin 0, 
which yields 

Idr) = Idx) cos 0 + Idy) sin 0, 

IdO) = -Idx)(sin Ojr) + Idy)(cos Ojr). 

Based on the (x, y) rectangular system, 

(drl = cos () (dxl + sin () (dyl, 

so that 

(dOl = -(sin Ojr)(dxl + (cos O/r)(dyl, 

gll = (dr I dr) == 1, 

g12 = (dr I d() = 0, 

g22 = (d() I d() = 1/r2. 

The Newtonian mistake is, of course, the neglect of 
giO and giO through ignorance. There is no A in 
Newtonian kinematics. Therefore, by Eq. (59), 

and 

Now 

Hi = glIlll + g12ll2' 

Hi == lll. 

H2goo == 1 + v~, 
WhICh is constant along a trajectory. In the Newtonian 
view, goo = 1; thus H is a constant. The left-hand side 
of Eq. (58) becomes 

and 
Hi' 

H!! (r2e). 
dt 

The last term on the right becomes 

and 

1 agik 
'2 - ---ll.ll = Hr() 

2H or 3 k 

1 ogik 
---lljllk=O. 

2H a() 
Equation (58), now considerably weakened, becomes 

;-rfJ2=O 
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and 

in which can be recognized the components of 
acceleration in polar coordinates. (The e component 
appears quite naturally as the rate of change of 
angular momentum.) Any reference to "true" force 
which may have been contained in Eq. (58) has been 
completely eliminated by the severe Newtonian 
prejudice-that kinematics and dynamics are separate. 
One might be tempted to write 

Hi = HrfJ 2 

and 
HO = -(oH/r)ffJ. 

But, as it is a definite pronouncement that rand e are 
not rectangular coordinates, it would be a violation 
of the rules to read the equation as F = ma. The path 
of a free particle is not a linear relation between r 
and e, but this is not attributed to forces. The present 
theory accepts the fact that the (x, t) system is neither 
Cartesian nor even associated with a constant metric 
tensor. Forces are either all "true" or all "fictitious": 
kinematical relations are dynamical relations. 

An illustration of this is given by a more cautious 
approach to the Newtonian case. Let the velocity be 
small and let the metric tensor stay close to unity. 
The last term in Eq. (58) can be neglected. Because goo 
is a positive number it can be expressed as 

-2'1' goo = e . (60) 

The constant of motion, 1 + v~, can be labeled as 

m2 = 1 + v~, (61) 
so that 

(62) 

by Eq. (54). With gii ~ bij
, velocity and momentum 

are related by 
Hv = n - A. 

Equation (58) can be written now as 

!l.. (HVi) = __ 1_ ~. e2'1' _ OAi + v; (OAi _ OA~) 
dt 2me'l' ox' at ax' ox' 

= _ e'l' orp. _ OAi + Vi (OAi _ OAi). 
m ax' at ax' ax' 

With rp small, this becomes 

m - (1 + rp)v = - - -. - - + v -. - - . d i 1 orp OAi i (OAi OAi) 
dt m ax' at ax' ax; 

If m were spatially constant, or if the term 

cp(%xi)(1/m) 

were negligible, the equation of motion would be that 
of a particle of intrinsic mass m moving in a potential 
field cp/m with an effective mass m(1 + cp). The terms 
involving A would be interpreted as effects of a 
noninertial frame. To clarify the last point, recall that 

giiAiAi = gOO - l/goo . 

The present approximation requires that 

A2 = gOO - l/goo , 
with 

gOO = e2V 

~ 1 + 2V, 

cp = V - tA2. 

The equation of motion is now 

d i 1 oV 1 OA2 
m - (1 + rp)v = - - -. + - --. 

dt m ax' 2m ax' 

_ oAi + Vi(OAJ _ OAi). 

at oxi ox i 

The simplest situation is that in which 

Ai = m€iikXiWk 

with m and w constant. The equation of motion can be 
written as 

d . 0 V m 0 
m - (1 + cp)v' = - -: - + - -. [X2W2 - (XW)2] 

dt ox'm 2 ax' 

+ 2m€iikwivk. 
The Newtonian interpretation is: 

(i) Vim is the potential energy; 
(ii) w is the angular velocity of the rotating frame; 
(iii) (m/2) [X2W2 - (XW)2] is the centripetal potential 
energy; 
(iv) 2m€iikWiVk is the Coriolis force. 

The constant of motion m, called the intrinsic mass, 
is intrinsic to a particular trajectory; it varies from 
trajectory to trajectory. In general, 

m2 = 1 + (vq)2, 

and, in the case of a Cartesian (x, i) system, 

m2 = 1/(1 - v2). 

The number 1 in the numerator of the last equation 
is as good as any other number insofar as the present 
theory can do anything about it. To anticipate the 
closing remarks: there is little of significant result 
from the conception of mass for a single particle in an 
imposed field. 

IV. CONCLUDING REMARKS 

The metric tensor determines the motion, but what 
determines the metric tensor? The equation ma = F­
while mathematically symmetric, (F = ma)-is not 
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physically so. F is to be given, and the acceleration is 
fixed by it. So the theory of this paper is incomplete in 
so far as it describes the motion of a single particle 
against an immutable background. The origin of the 
background is unknown; the metric tensor is to be 
given. Newtonian mechanics can be completed by a 
prescription for the determination of the force which 
is independent of the detailed observation of a point 
moving under that force-Newton's law of gravita­
tional attraction. Any other truly Newtonian force is 
independent of velocity and so can be determined by 
opposition to a gravitational force, where both forces 

act on a stationary point-e.g., th~ linear spring 
extended by a hanging weight. However, for a large 
enough system of particles, there is no force external 
to the system; thus the force acting on a particular 
particle is a summarization-approximate or not-of 
the mutable configuration of the other particles. So 
perhaps the metric tensor is set by the configuration 
of other particles. Through a proper treatment of the 
differential geometry of many trajectories it may be 
possible to eliminate the metric tensor formally, 
retaining it only for the very practical function of an 
in termediary. 
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The weak correspondence principle (WCP) for a scalar field states that the diagonal matrix elements 

G(f,g) == (f,gl ~ II,g) 
of a quantum generator ~ necessarily have the form of the appropriate classical generator G in which 
I(x) and g(x) are interpreted as the classical momentum and field, respectively. For a field operator <p(x) 
and its canonically conjugate momentum 1T(X) the states in question are given by 

II,g) == exp {iJ[<p(X)/(x) - 1T(x)g(x)]dx} 10), 

where 10) denotes the vacuum. The validity of the WCP is established for the six Euclidean generators 
(plus the Hamiltonian) of a Euclidean-invariant theory, and for the ten Poincare generators of a Lorentz­
invariant theory. Only general properties and certain operator domain conditions are essential to our 
argument. The WCP holds whether the representation of 1T and <p is irreducible or reducible; in the 
latter case, the WCP holds even if the vectors If,g) do not span the Hilbert space, or even if the 
generator ~ is not a function solely of 1T and 'P. Thus, the WCP is an exceedingly general and completely 
representation-independent connection between a classical theory and its quantum generators which is 
especially useful in the formulation of nontrivial, Euclidean-invariant quantum field theories. 

1. INTRODUCTION 

BASIC to any quantization procedure is a prescrip­
tion for relating the quantum problem to its 

classical counterpart. The traditional guide in this 
respect has been a prescription which involves, 
essentially, a straightforward operator substitution 
for "coordinates" and "momenta" in the classical 
generators. In field theory, a normal ordering and 
subsequent renormalization is often necessary to make 
any sense of such a prescription. In this paper we 
shall establish a more general correspondence rule­
the weak correspondence principle (WCP)-and 

• Present address: Department of Physics, Syracuse University, 
Syracuse, N.Y. 

show how it accounts for normal ordering and certain 
renormalizations in field theory. More significantly, 
however, we show that the WCP is far more general 
and that it applies in cases where the traditional 
prescription is manifestly incorrect. This latter aspect 
has been concretely demonstrated in recent analyses 
of the soluble "rotationally-symmetric" models.!. 2 

We confine our attention to a neutral scalar 
quantum field tp(x, t) in the presence of Euclidean­
invariant self-interactions. In Sec. 2 some basic 
definitions and the general statement of the WCP for 

1 J. R. Klauder, J. Math. Phys. 6, 1666 (1965). 
• H. D. I. Abarbanel, J. R. KIauder, and J. G. Taylor, Phys. Rev. 

152, 1198 (1966). 
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physically so. F is to be given, and the acceleration is 
fixed by it. So the theory of this paper is incomplete in 
so far as it describes the motion of a single particle 
against an immutable background. The origin of the 
background is unknown; the metric tensor is to be 
given. Newtonian mechanics can be completed by a 
prescription for the determination of the force which 
is independent of the detailed observation of a point 
moving under that force-Newton's law of gravita­
tional attraction. Any other truly Newtonian force is 
independent of velocity and so can be determined by 
opposition to a gravitational force, where both forces 

act on a stationary point-e.g., th~ linear spring 
extended by a hanging weight. However, for a large 
enough system of particles, there is no force external 
to the system; thus the force acting on a particular 
particle is a summarization-approximate or not-of 
the mutable configuration of the other particles. So 
perhaps the metric tensor is set by the configuration 
of other particles. Through a proper treatment of the 
differential geometry of many trajectories it may be 
possible to eliminate the metric tensor formally, 
retaining it only for the very practical function of an 
in termediary. 
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The weak correspondence principle (WCP) for a scalar field states that the diagonal matrix elements 

G(f,g) == (f,gl ~ II,g) 
of a quantum generator ~ necessarily have the form of the appropriate classical generator G in which 
I(x) and g(x) are interpreted as the classical momentum and field, respectively. For a field operator <p(x) 
and its canonically conjugate momentum 1T(X) the states in question are given by 

II,g) == exp {iJ[<p(X)/(x) - 1T(x)g(x)]dx} 10), 

where 10) denotes the vacuum. The validity of the WCP is established for the six Euclidean generators 
(plus the Hamiltonian) of a Euclidean-invariant theory, and for the ten Poincare generators of a Lorentz­
invariant theory. Only general properties and certain operator domain conditions are essential to our 
argument. The WCP holds whether the representation of 1T and <p is irreducible or reducible; in the 
latter case, the WCP holds even if the vectors If,g) do not span the Hilbert space, or even if the 
generator ~ is not a function solely of 1T and 'P. Thus, the WCP is an exceedingly general and completely 
representation-independent connection between a classical theory and its quantum generators which is 
especially useful in the formulation of nontrivial, Euclidean-invariant quantum field theories. 

1. INTRODUCTION 

BASIC to any quantization procedure is a prescrip­
tion for relating the quantum problem to its 

classical counterpart. The traditional guide in this 
respect has been a prescription which involves, 
essentially, a straightforward operator substitution 
for "coordinates" and "momenta" in the classical 
generators. In field theory, a normal ordering and 
subsequent renormalization is often necessary to make 
any sense of such a prescription. In this paper we 
shall establish a more general correspondence rule­
the weak correspondence principle (WCP)-and 

• Present address: Department of Physics, Syracuse University, 
Syracuse, N.Y. 

show how it accounts for normal ordering and certain 
renormalizations in field theory. More significantly, 
however, we show that the WCP is far more general 
and that it applies in cases where the traditional 
prescription is manifestly incorrect. This latter aspect 
has been concretely demonstrated in recent analyses 
of the soluble "rotationally-symmetric" models.!. 2 

We confine our attention to a neutral scalar 
quantum field tp(x, t) in the presence of Euclidean­
invariant self-interactions. In Sec. 2 some basic 
definitions and the general statement of the WCP for 

1 J. R. Klauder, J. Math. Phys. 6, 1666 (1965). 
• H. D. I. Abarbanel, J. R. KIauder, and J. G. Taylor, Phys. Rev. 

152, 1198 (1966). 
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such fields are formulated. Applications to Euclidean­
and Lorentz-invariant interactions are carried out in 
Secs. 3 and 4, respectively. Finally, in Sec. 5, we 
discuss the significance and utility of the WCP. In 
order to ensure clarity of the concepts involved we 
adopt a semiheuristic approach in this paper ignoring 
questions of operator domains, test-function smearing, 
and thl'! like. 

2. BASIC DEFINITIONS AND GENERAL 
STATEMENT OF WEAK CORRESPONDENCE 

PRINCIPLE 

We deal with a neutral scalar field 9?(x) and its 
conjugate momentum 1T(X), which at a common time 
satisfy the usual canonical commutation relations 
(CCR) , 

[9?(X), 1T(X')] = ibex - x'), (1) 

where x, x' are points in a three-dimensional Eu­
clidean space. Unless otherwise stated, all operators are 
to be evaluated at time t, a variable which is generally 
suppressed. We especially use the unitary Weyl 
operators 

U[f, g] == exp {if [9?(x)f(x) - 1T(X)g(X)] dX}, (2) 

which are defined for sufficiently many well-behaved 
functions f(x) and g(x). To fix the idea, it may be 
assumed that f(x) and g(x) are infinitely differentiable 
and fall off at infinity faster than any inverse power of 
Ixi. Evidently, we have U[j,g]t = U[-f, -g]. Some 
straightforward consequences of the CCR which we 
frequently use are 

U[f, g] = exp {!if f(x)g(x) dX}U[O, g]U[f, 0] (3a) 

= exp {-tif f(x)g(x) dX}U[f, 0]U[0, g], 

and the "translation property" 

U[f, g]t {1X9?(X) + P1T(X)}U[f, g] 

(3b) 

= OC{9?(X) + g(x)} + P{1T(X) + f(X)} , (4) 

where IX and (J are complex numbers. 
We introduce a distinguished set of unit vectors 

according to the definition 

If,g) == U[f,g] 10) (5) 

for sufficiently many f and g. In our subsequent 
applications we regard 10) as the unique translationally 
invariant state, or equivalently as the unique ground 
state for the problem at hand. Generally, the vectors 
If, g) are not mutually orthogonal for different 
arguments; on the contrary, telling information 

regarding the problem and the CCR representation 
leaves its imprint in the overlap (f, g If', g') between 
such vectors. While the states If, g) are most useful 
when they span the Hilbert space i>, the basic state­
ments embodied in the weak correspondence principle 
do not require that they span i>; the WCP remains 
valid in the subspace that these vectors do span. For 
notational convenience we shall not distinguish these 
cases and we refer simply to the collection of states 
If, g) as the overcomplete family of states (OFS). 

We are primarily interested in the diagonal OFS 
matrix elements 

G(f, g) == (f, gl ~ If, g) 

for various operators interpreted as quantum genera­
tors. Additionally, from (3), we may deduce that 

G(f, g) = (01 U[O, -g]U[ -f, O]~ U[f, O]U[O, g] 10), 

(6a) 

= (01 U[ -f, 0]U[0, -g]~ U[O, g]u[f, 0] 10), 

(6b) 
where we note that 

U[f,O] = exp {if 9?(x)f(x) dX}' (7a) 

U[O, g] = exp {-if 1T(X)g(X) dX}. (7b) 

Suppose, now, one seeks to choose an operator ~ 
to associate with some classical generator (e.g., 
Hamiltonian) G(1Te!, 9?e!) depending on the classical 
field 9?et(x) and its conjugate momentum 1Tet(X). In 
the traditional approach one adopts 

~ = :G(1T,9?): (8) 

for the quantum generator where the colons denote' 
some sort of normal ordering. With this choice we 
see from (4) that 
(01 U[f,g]t:G(1T, 9?):U[f,g] 10) 

= (01 :G(1T + f, 9? + g): 10) = G(f, g), (9) 

with all other terms vanishing. Thus one consequence 
of the traditional identification (8) is that diagonal 
OFS matrix elements of the quantum generator yield 
the classical generator with the understanding that 

(10) 

This property is not limited to the usual definition of 
normal ordering (all creation operators to the left of 
all annihilation operators), but applies to the genera­
lized normal ordering implicit in the generating 
functional 

:U[f,g]: == U[f,g]/(Ol U[f,g] 10), 
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whatever form the c-number denominator may take. 
If the CCR representation is irreducible, then the 

prescription (8) is generally correct. However, if the 
CCR representation is reducible, then for many 
important operators the preceding prescription neces­
sarily fails. This failure is often so complete that ~ 
cannot be expressed as any function solely of 1T and 
rp. Such is the case, for example, for the three genera­
tors of space translations :T k' k = I, 2, 3, and the 
Hamiltonian Je, if we assume that 10) is a nonde­
generate eigenstate of these operators.3 The space­
time translation generators for a generalized free 
field are a case in point. 

It is the purpose of the WCP to shed light on the 
situation even in those cases where (8) breaks down. 
The WCP states that the diagonal OFS matrix 
elements of quantum generators have the proper 
classical functional form independent of whether Eq. 
(8) holds or not. In symbols, im is the quantum genera­
tor associated with the classical generator G, then the 
WCP states that these quantities are connected by the 
relation 

G(f, g) = <I, gl ~ If, g) (11) 

not only when (8) is true but even in cases where ~ 
is not any function solely of the 1T and rp.4 

Roughly speaking, the WCP does not precast the 
CCR representation into the narrow confinements of 
an "irreducible mold"; on the contrary, the WCP 
leaves completely open the ultimate nature of the 
CCR representation. As was shown elsewhere,l such 
liberalism is necessary to achieve any solution at all 
in the case of the "rotationally-symmetric" models. 

The remainder of this paper is devoted to verifying 
(11) for the principal generators in Euclidean- and 
Lorentz-invariant problems. We treat the simpler 
Euclidean-invariant cases first as preliminaries to the 
more interesting Lorentz-invariant cases. 

3. WEAK CORRESPONDENCE PRINCIPLE 
IN EUCLIDEAN-INVARIANT THEORIES 

For a given Euclidean-invariant theory we assume 
there exist three space-translation generators :T k, 

3 The field and momentum operators are reducible if they admit 
a common decomposition q; = q;, EB q;2' TT = TT, EB TT2' If Je (say) 
were a function solely of TT and q;, then Je = Je, EB Je 2 which would 
violate the assumption that /0) is a nondegenerate eigenstate of Je. 
Consequently, Je cannot be a function solely of TT and q;. A similar 
argument applies to ~ k • 

• The word "classical" as used here need only be taken to infer 
that the diagonal OFS matrix elements have a functional dependence 
on the fields f and g similar to that of the appropriate generator of 
the classical theory. No deterministic interpretation of the fields f 
and g is implied or intended; indeed, Ii is not set to zero but remains 
unaltered in the WCP (having the value one in the units chosen here). 
Further discussion of the WCP including the Ii dependence is 
contained in a related analysis for particle mechanics by J. R. 
Klauder, J. Math. Phys. 4,1058 (1963); 5,177 (1964). 

three infinitesimal rotation generators 'Jk , k = 1,2,3, 
having traditional commutation properties, and a 
positive Hamiltonian operator 4), which commutes 
with the generators of the Euclidean group. We 
assume the state 10) is a simultaneous eigenstate such 
that (for all k) 

:Tk 10) = '(h 10) = Je 10) = 0. 

From Euclidean invariance of 10) it follows that 

V'k(OI cp(x) 10) = V'k(OI1T(x) 10) = 0. (12) 

Momentum Operators 

To illustrate our basic idea most simply let us first 
consider the space-translation generators :Tk • Almost 
instinctively these operators are identified with the 
quantities f1TV'kCP dx suitably normal ordered. Yet, as 
we have noted,3 for a reducible CCR representation 
and unique translationally invariant state, the above 
identification is manifestly false. 

We proceed to determine the three functionals 

Pi}; g) = (f, gl :Tk If, g). (13) 

From the condition :Tk 10) = 0, we conclude that 
Pk(O, O) = 0. From [:Tk' rp(x)] = -iV'k rp(x) coupled 
with (6a) , (4), and (12), we learn that 

[lJjlJf(x)]Pif, g) = i(f, gl [:Tk' rp(x)] If, g) 

=(f, gl V'kCP(X) If, g) = V'~(x). 

In similar fashion, [:Tk' 1T(X)] = -iV'k1T(X) coupled 
with (6b), (4), and (12) leads to 

[lJjlJg(x)]Pif, g) = -i(j, gl [:Tk' 1T(X)] If, g) 

= -(j, gl V'k1T(X) If, g) 

= -V'J(x). 

The only functionals consistent with these three 
conditions are easily seen to be 

(f, gl:Tk If, g) = Pk(f, g) = f f(x)V'kg(x) dx. (14) 

Clearly if we interpret g(x) as a classical c-number 
field and f(x) as its conjugate momentum-as we 
hereafter shall-then (14) states that the diagonal 
expectation value of the quantum generator of space 
translations in the states If, g) yields the classical 
generator of space translations. This is just the WCP 
as applied to the space-translation generators, In 
obtaining this result we note that no functional form 
for :Tk was assumed, nor was it assumed that the 
states If, g) span f>. 
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Angular Momentum Operators 

A similar computation determines the diagonal 
matrix elements 

Jif, g) == (j, gl d'k If, g) 

for the rotation group generators. From d'k 10) = ° it 
follows that Jk(O, 0) = O. Since 

[d'k' <p(x)] = -iEk1mX I yo m<P(X) , 

and similarly for 1T(X), it follows that 

[c5/c5f(x)]Jk(f, g) = i(j, gl [d'k' <p(x)] If, g) 

= EklmXS mg(X) , 
and 

[c5/~g(x)]Jk(f, g) = -i(f, gl [d'k, 1T(X)] If, g) 

= -EklmXS mf(x). 

These conditions uniquely fix Jk and we find that 

<I, gl d'k If, g) = Jk(f, g) = f Eklmf(x)xS mg(x) dx. 

(15) 

As is readily seen, the Jk are just the classical 
generators of infinitesimal rotations as required by 
the WCP.5 

Hamiltonian 

We now turn our attention to the generator of time 
translations, the Hamiltonian Je. We seek to study the 
functional 

H(f, g) == (j, gl Je If, g) (16) 

which is evidently real and (granted suitable spectral 
conditions on Je) is positive subject to the single 
exception H(O,O) = 0 since Je 10) = O. From the 
condition [Je, <p(x)] = -i1T(X) coupled with (6a) and 
(4), it follows that 

[c5/d/(x)]H(f, g) = i(j, gl [Je, <p(x)] If, g) 

= (I, gl1T(x) If, g) 

= I(x) , 

since (OI1T(x) 10) = i(OI [Je, <p(x)] 10) == 0. Conse­
quently we can put 

H(f, g) = ~ J P(x) dx + W(g), (17) 

with W(g) > 0 excepting the case g = 0, where 
W(O) = J. Euclidean invariance of Je implies that 
W(g) is invariant under spatial rotations and trans­
lations of g(x). Further information about W is of 

• It is evident from the preceding examples that any "kinematic" 
generator (Le., one whose commutator with an arbitrary linear sum 
of 'P and 1T is again a linear sum of 'P and 1T) which annihilates the 
state 10) will fulfill the WCP. 

course difficult to deduce in general but some features 
may be inferred from plausible requirements on Je. 

If we introduce the notation 

1T(g) = f 1T(x)g(x)dx, 

then we may set 

W(g) 
= H(O, g) = (01 ei,,(g)Jee-i,,(g) 10) 

co 

= I(n!)-lin(OI [1T(g), [1T(g),"', [1T(g),Je]"'] 10) 
n=2 

co 

== I (n!)-IWn(g) 
n=2 

x g(XI) ... g(Xn) dX1 ••• dxn, (18) 

where Wn(g) is homogeneous of degree n. If W( -g) = 
W(g) is a plausible even symmetry, then W .. (g) = 0 
for all odd integral n. For a polynomial-type interaction 
the series in (18) should terminate; indeed, for 
example, a general <p4-type interaction Hamiltonian 
should at least be sensitive to the power four in such a 
way that afive fold multiple commutator of 1T(g) with 
Je vanishes identically. If we combine these arguments, 
then a <p4-type theory should involve only W2(g) and 
W4(g)· 

In addition to limiting the number of terms which 
contribute to W(g), some general properties of 
wn(xI ,' •• ,xn) may be postulated in special cases. 
In particular, besides Euclidean invariance of these 
quantities, an essentially local theory may be defined as 
one for which all nonvanishing w,,(x1 ,'" ,xn) are 
distributions with but a single point of support at 
Xl = X2 = ... = Xn for all n. This is an important 
classification and, as we note below, it includes the 
relativistic interactions. 

Let us examine the specific term W2(g) in some­
what greater detail. Evidently we have the several 
relations 

W2(g) = -(01 [1T(g), [1T(g),Je]] 10) 

= 2(011T(g)Je1T(g) 10) 

= f f W2(Xl, X2)g(X1)g(X2) dX1 dX2 

== J w2(k) Ig(k)12 dk. 

In this expression, 

W2(X1 , x2) = 2(011T(x1)Je1T(x2) 10), 

g(k) = (21T)-!J e-ll<·Xg(x) dx; 

(19) 
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also 

w2(k) = I e-ik
.
X

W2(X, 0) dx, 

which by rotational invariance is a function only of 
k = Ikl. In the case of a unique ground state, then 
wz(k) > 0 (almost everywhere). For an essentially 
local theory, Wz is a polynomial in kZ; for a relativistic 
theory we show below that wz(k) = k 2 + m~. 

In the simplest of examples, Wz(g) is the only 
nonvanishing term in (18), and a free-field Hamil­
tonian results. As a "collection of independent 
oscillators" such a free-field theory admits a straight­
forward irreducible quantization whose CCR repre­
sentation is characterized by the fact that 

(f, g 1 0) = exp {- ~ I [w2(k)-i 1!(k)IZ 

+ w2(k)i Ig(k)12] dk}. 

In the present case, Je = :H(1T, cp): so that the validity 
of the WCP follows from Eq. (9). It may also be 
worth noting in this case that each distinct w2(k) 
corresponds to a unitarily inequivalent CCR repre­
sentation. 

Concrete examples of Euclidean-invariant models 
with nonvanishing interaction are the "rotationally 
symmetric" models.1.2 Only discrete energy levels 
arise in these models so no scattering takes place. 
Elsewhere, we will present other Euclidean-invariant 
models withnonvanishinginteraction [e.g., W4(g) ~ 0] 
which exhibit both scattering and production. Some 
of these latter examples are essentially local in the 
sense discussed above. Each of these models exploits 
a reducible CCR representation, and although they 
satisfy no conventional prescription like Eq. (8), 
they nonetheless all fulfill the WCP. 

4. WEAK CORRESPONDENCE PRINCIPLE 
IN RELATIVISTIC INVARIANT THEORIES 

We divide our relativistic discussion into two parts: 
the first part is an extension of the arguments in the 
preceding section, while the second part is a covariant 
reformulation of the results of the first part. 

Quite clearly the previous discussion of the momen­
tum and angular momentum generators applies in the 
present case. We begin by examining the Hamiltonian 
somewhat further. 

Hamiltonian 

We note initially that local commutativity on a 
single spacelike surface (1 = const) requires that 

[1T(XJ, [1T(Xz), Je]] = 0; Xl ~ X2 , 

and similarly for additional commutators with 1T(X). 
Thus relativistic fields are essentially local fields in the 
previous sense. We next show in a two-stage analysis 
that covariance arguments enable us to determine the 
functional form of 

00 

W(g) = !(n!)-lWn(g) 
n=2 

in Eq. (18). 
We may determine the second-order term W2(g) 

with the aid of the Lehmann representation for the 
two-point function. In particular, relativistic invari­
ance leads to the well-known expression6 

where (02 = k 2 + m2, and (since we assume CCR) 

I p(m2
) dm2 = 1; p(m2

) ~ o. 

Combining the relation 

(01 cp(X)Je3cp(y) 10) = (01 [cp(x), Je]Je[Je, cp(y)] 10) 

= (OI1T(x)Je1T(Y) 10) = iwz(x, y) 

with the result of three time derivatives of (20) at the 
origin, we find that 

W2(X, y) = (2~)3 II eik
.(X-

Y)(k2 + mZ) dkp(m2) dm2. 

Evidently, in the relativistic case, we may conclude 
that 

(21) 
where 

(22) 

The latter expression is recognized as the usual de­
finition of the bare mass, although it is deduced by 
different arguments. 7 In the present formulation, Eq. 
(22) becomes a consequence of the WCP. By way of 
summary at this point we note that (19) and (21) lead 
to 

Wz(g) = I [(Vg)2 + m~gZ] dx, (23) 

as befits the second-order contribution to a relativistic 
Hamiltonian. 

The remainder of W(g) is best treated as a unit. 

• See, e.g., s. s. Schweber, An Introduction to Relativistic Quantum 
Field Theory (Harper & Row, Publishers, Inc., New York, 1962), p. 
659. 

7 S. S. Schweber, Ref. 6, p. 667. 
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Let us introduce 
ro 

V(g) == W(g) - tW2(g) = L (n!)-l Wn(g) (24) 
n=3 

as the classical interaction potential. When we discuss 
the relativity generators below we shall be able to 
show that V(g) has a form given by 

V(g) = I V[g(x)] dx = n~ (n !)-lCn I gn(x) dx, (25) 

where Cn are constants. 
. Accepting this result for V(g) temporarily, we learn 
In the relativistic case that the diagonal 0 FS matrix 
elements of the Hamiltonian have the form 

HU, g) = </, gl Je If, g) 

= !-I{p(X) + [Vg(X)]2 + m~g2(x)} dx 

+ I V[g(x)] dx, 

== J H(x) dx. (26) 

Here, H(x) is a nonnegative density defined in 
obv~~us fashion from f(x), Vg(x) , and g(x). If in 
addItIon we assume the conditions of (say) a r4-type 
theory as discussed in Sec. 3, then HU, g) would have 
the form (26) in which V[g(x)] = Ag4(X) for some 
positive constant A. Evidently Eq. (26) gives just the 
desired family of classical relativistic Hamiltonians, 
and so fulfills the WCP in splendid fashion. 

Relativity Transformations 

We may adjoin three relativity-transformation 
generators J(,k' k = 1,2, 3 (all defined at t = 0) to 
our Euclidean generators and Hamiltonian discussed 
above and make a set of Poincare generators. The 
three functionals 

KkU, g) = (f, gl J(,k If, g) 

may be found as before. From J(,k 10) = 0 there 
follows the condition Kk(O, 0) = O. From 

[J(,k, rex)] = -i[tVkr(x) + xk¢(x)], 

we learn that 

d 
df(x) Kk(f, g) = i(f, gl [J(,k' q;>(x)] If, g) 

Likewise, 

= (f, gl tVkr(x) + iXk[Je, rex)] If, g) 

d 
= tVkg(x) + Xk df(x) HU, g). 

which is just the time derivative of the previous 
commutator, leads to 

d 
dg(x) KkU, g) = -i</, gl [J(,k, 7T(X)] If, g) 

= </, gl - tVk7T(X) - Vkr(x) 

- iXk[Je, 7T(X)] If, g) 

= -tVd(x) - Vkg(x) 

d 
+ X k dg(x) HU, g). (27) 

In terms of H(x) [implicitly defined in (26)], the 
solution for the functionals Kk is readily seen to be 

</, gl J(,k If, g) = Kif, g) 

= f [f(x)tVkg(x) + xkH(x)] dx. (28) 

This expression makes explicit use of the (Vg)2 term in 
H(x) [to win the term - V ~(x) in (27)], and makes 
~mplicit use of the absence of any other field gradient 
In H~x). Stated other~ise, if some term in V(g) 
contaIned a field gradIent, then the solution for 
Kif, g) would differ from that in (28) over and above 
a mere redefinition of H(x) to reflect the gradients in 
V(g). However, with a standard argument we next 
show that only (28) can be correct thereby clinching 
the fact that V(g) has no gradients and hence has the 
form stated in (25). 

We recall the basic commutation relation 

[J(,k' ~ I] = - idk!Je 

among the Poincare generators, which we can im­
mediately restate as 

e-ia ,3',J(, eia,3', = J(, + a '1f) 
k k k~' 

where ak are the components of a three vector a. Since 

ettt ,(/', If(x), g(x» = If(x - a), g(x - a», 

it follows that [f = f(x) , g = g(x)] 

Kif(x - a), g(x - a» = (f, gl e-ia,(/',J(,keia,(/" If, g) 

= (f, gl (J(,k + akJe) If, g) 

= KkU, g) + akH(f, g). 

This relation is fulfilled by (28) since H(x) is the same 
density involved in defining HU, g). In turn, in order 
for this to be true, it is required that Eq. (25) hold, 
thus establishing its validity. This is the same argument 
used to prove Eq. (25) in a strictly classical theory. 

In summary, we may combine the present results 
with those of Sec. 3 to conclude that in a relativistic 
theory all ten generators of the Poincare group fulfill 
the WCP for some local interaction density V[g(x)]. 
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Additional conditions-such as those corresponding 
to a r4-type theory-may be imposed to restrict the 
form of the interaction potential. 

Covariant Formulation of the Weak 
Correspondence PrincipJe 

In this section we recast the previous results into 
a Lorentz covariant form. We employ a metric with 
signature - 2, and a unit surface-normal vector n'" 
and three-volume element dd"', which in an appropriate 
frame have vanishing spacelike components and time­
like components of 1 and dx, respectively. Let a 
denote the spacelike surface which in the same 
appropriate Lorentz frame is just the surface t = 
const. Then we may relate the function pair I(x) and 
g(x) used previously to a space--time function g(x) 
through the relations 

g(x) = g(x); X E a, 

f(x) = n"'o",g(x); x E a. 

Note by this that all previously used spatial coordi­
nates are reinterpreted as contravariant· components 
XC as usual. With this notation, the covariant defini­
tion of the vectors in the OFS is given by 

If, g) == exp {i J ra,.g da"'} 10), (29) 

which in the appropriate frame just reduces to (5). 
The ten generators of the Poincare group are given 

by the skew tensor.At,~Jl and four-momentum :1'''' which 
fulfill the standard commutation rules 

WI', .At,all] = _i(gP"':1'a _ gIX":1'P), 

[.At, ali, .At, 'fT] = _ i(g"'" .At,P' _ glitT.At, IZT 

+ gJlT .At,lZtT _ gaT .At,JlO'). 

The connection of these expressions with our previous 
generators is given by 

:1'A: = _:1'k, Je = :1'0 = (:fO), J(,k = ..A(,Ok (= ..A(,Ok), 

ak = .At!m (= .At,lm); k, I, m = 1,2,3 cyclic. 

We may immediately generalize the diagonal OFS 
matrix elements to covariant form from their values 
in a specific frame. In particular, the covariant WCP 
for the ten Poincare generators reads 

and 

(f, gl:1''' If, g) = P"(f, g) =J T"V(x) da. (30) 

(f, gl .At,ali If, g) = Mali(f, g) 

= J [x'"TP'(x) - xJlT":V(x)} dd.. (31) 

In these expressions, PV(x) is the classical stress­
energy tensor given by 

T1V(X) = o"g(x)iJVg(x) - g"VL(x), 
where 

L(x) == Hro"g(x)]2 - m~g2(x)} - V[g(x)] 

as follows from our analysis in a specific frame coupled 
with Lorentz covariance. 

In summary, the diagonal OFS matrix elements of 
the ten Poincare generators yield the ten generators of 
a classical covariant theory expressed in the traditional 
form with the aid of a stress-energy tensor. 

5. SUMMARY AND DISCUSSION 

In the previous sections, we have shown that 
diagonal matrix elements of quantum generators in 
the states If, g) yield the appropriate classical gener­
ators as required by the weak correspondence prin­
ciple. Basically, these results are only contingent on 
certain operator domain conditions, and are not 
wedded to a three-dimensionality of space nor to a 
complete expandability of W(g) in a power series. 
If the canonical operators 7T and r' are irreducible, 
then the WCP is equivalent to normal ordering. 
However, if 7T and r are reducible-independent of 
whether the states If, g) span Je or not-the WCP 
is far more general. As already noted in such a case,s 
Je cannot be solely a function of 7T and r. It must 
clearly be understood that, in general, this property 
implies that no conventional field equations (i.e., 
if; = F{!p} for some functional F of r at a fixed time) 
can hold; hence no conventional T-function equations, 
nor conventional Schwinger equations can hold. 
These features are not related to renormalizations 
and are easily illustrated for generalized free fields. 

The utility of the WCP stems from the constraints 
it places on the CCR representation and the quantum 
generators, constraints which can serve as a guide in 
formulating the quantum theory. For example, given 
a representation of the operators 7T and !p, the WCP 
can help to test which operators if any can serve as 
generators appropriate to a specified classical theory. 
Generally, for a given CCR representation, it happens 
that no operator can be found which fulfills the WCP 
for a prescribed classical Hamiltonian and different 
CCR representations must be tried. Once a representa­
tion and generators compatible with the WCP are 
found, it follows that a consistent quantum theory 
exists. Sometimes it ends up that there are several 
quantum theories compatible with the WCP as, e.g., 
happens with a generalized free field in which only 
the first moment of the spectral weight is specified 
classically [cr., Eq. (22)J. For the "rotationally 
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symmetric" models there are a two-parameter family 
of quantum solutions compatible with the WCP 
(these solutions may be labeled by the mass values of 
the two asymptotic "one-particle" states that arise in 
these models). Such nonuniqueness is by no means 
unexpected since the WCP, by itself, generally pro­
vides only a partial constraint on the quantum 
generator, especially if the states If, g) do not even 
span 5. 

Because the reducible representations for 71" and q; 
which we advocate are somewhat unconventional, let 
us note here several features in their favor. For 
example, reducible representations readily take care 
of Haag's theorem which requires that the CCR 
representation of a nontrivial Euclidean-invariant 
theory be unitarily inequivalent to an irreducible, 
free-field Fock representation.8 One fashionable 
irreducibility axiom is the so-called time-slice axiom, 

8 A. S. Wightman, Lecture Notes at the French Summer School of 
Theoretical Physics, Cargese Corsica, July, 1964 (Gordon & Breach, 
to be published) 

which roughly states that the operators q;(x, t) for all 
x and It I < €, € > 0, are irreducible. From this axiom 
it need not follow that just q;(x) and ¢(x) = 71"(x) at 
t = ° (say) are irreducible. Also, since the commuta­
tion relations for fields are known "to have uncountably 
many inequivalent irreducible representations, it is 
conceivable that a reducible representation could 
arise, loosely speaking, so as to be able to display 
some of this variety as so often occurs, e.g., with the 
rotation group. 

Finally, although not directly related to this paper, 
it is interesting to note that recent results for relativ­
istic Fermi fields (depending likewise on a few domain 
conditions) imply that a nontrivial relativistic theory 
fulfilling traditional anticommutation rules must 
necessarily employ reducible representations of the 
spinor field and its adjoint.9 We hope to develop a 
weak correspondence principle for Euclidean- and 
Lorentz-invariant Fermi fields in a subsequent paper. 

9 R. T. Powers, Commun. Math. Phys. 4, 145 (1967). 
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We set up a Rayleigh-Ritz procedure for determining the approximate classical and quantum internal 
motion of a singularity-free solution to a nonlinear field theory. The dynamical approximation procedure 
is applied to the particlelike solutions of a nonlinear model scalar field theory and to the particlelike 
solutions of a class of nonlinear model scalar-spinor theories. Dynamically stable, metastable, periodic, 
and unstable particlelike solutions all follow for certain ranges of the physical parameters from the 
classical theory, but only corresponding metastable and unstable associated quantum stationary states 
are obtained for the nonlinear model theories considered here. The functional dependence of the decay 
constant for the metastable quantum stationary states is such that very long-lived, practically stable, 
states are admissible. Group-theoretic techniques for the systematic derivation of rigorous particlelike 
solutions are also described and illustrated with examples. 

I. INTRODUCTION 

TIM Eo INDEPENDENT singularity-free particlelike 
solutions to model Lorentz-covariant nonlinear 

field theories have been the subject of recent papers.1- 3 

Rigorous examples of such spatially localized solutions 
of finite energy are reported in these papers for certain 
model field theories, along with general criteria for the 
existence and stability of a time-independent singu­
larity-free particlelike solution to any nonlinear field 
theory.1.2 A Rayleigh-Ritz approximation theory has 
been formulated for deriving the motion of such a 
"particle" in a superimposed small-amplitude ex­
ternal field, that is, the over-all motion induced in a 
singularity-free particlelike solution by virtue of the 
nonlinearity of the field equations.3 

In the present work we consider the internal 
dynamical theory associated with particlelike solutions, 
according to both classical and quantum mechanics. 
Our analysis 'is again based on a Rayleigh-Ritz 
approximation procedure, but in this case a procedure 
for calculating internal dynamical changes of the 
"particle." Theory for the internal quantum motion 
of the particlelike solution is then formulated in 
analogy to the classical Rayleigh-Ritz approximation 
theory by adapting and refining an idea of Petiau.4 

The latter approximation method offers a new and 
practical way to obtain physically reasonable quantum 
dynamical predictions from an essentially nonlinear 
field theory. In this paper, we apply the classical and 
quantum approximation theory to the model particle. 
like solutions obtained previously1.2 and give special 
attention to the dynamical stability of these solutions. 

1 G. Rosen. J. Math. Phys. 6, 1269 (1965). 
S G. Rosen, J. Math. Phys. 7, 2066 (1966). 
3 G. Rosen, J. Math. Phys. 8, 573 (1967). 
• G. Petiau, Ann. Inst. H. Poincare 3, 127 (1965); Nuovo Cimento 

40,84 (1965). 

n. GENERAL APPROXIMATION METIJOD 

Consider a Lorentz-covariant field theory with the 
scalar-invariant Lagrangian density 

c = £:(cp, 1>, Vcp) (2.1) 

in which cp = cp(x, t) is a generic (multicomponent) 
real field and 1> == &cp/dt. The action principle 

b J L dt = 0, L == J r tFx (2.2) 

produces the field equations 

:~ - :1 (~) - V· (d(~CP») = O. (2.3) 

With the assumption that the classical field equations 
(2.3) admit an approximate solution of the form 
cp = ~(x; ~l' ••• '~N)' where the ~'s are certain 
functions of t, it follows that the functions ~k = ~k(t) 
must satisfy the Rayleigh-Ritz equations derived 
from Eq. (2.2), 

~~ -:J~~) = 0, [k = 1,"', N), (2.4) 

equations of the Euler-Lagrange form with the 
Lagrangian given by 

L = J c(';;, $, V';;) d3x 

= L(';1' ... , ';N, ~l' ••• '~N)' (2.5) 

Modulo an additive constant volume integral which 
does not involve the ';'s or the ~'s, the Lagrangian 
(2.5) must exist as a well-defined (finite) function for 
applicability of the Rayleigh-Ritz equations (2.4), 
requiring a singularity-free (integrable) .;; and con­
ditioning a suitable functional dependence of';; on the 
~'s. Approximate dynamical solutions to the field 

2400 
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theory are then obtainable by integrating the Euler­
Lagrange equations (2.4). Moreover, corresponding 
and approximate quantum states are also obtainable 
by an elementary adaptation3•4 of the preceding 
classical method, the Lagrangian (2.5) describing the 
physical system accurately to within the approxi­
mation of N dynamical degrees of freedom. Asso­
ciated with (2.5) is the Hamiltonian 

H = H(~l"", ~N,'YIl"" ,'YIN) 
N • oL 

== I ~k'YIk - L, 'YIk == -;- , (2.6) 
k=1 O;k 

and standard canonical quantization leads to the 
Schrodinger equation 

ilio""lot = H(;1"", ;N, -iliolo;!,"', -iliolo;N)"" 
(2.7) 

for the wavefunction "" = ""(;1, ... , ;N; t). Again, 
as in the approximate classical dynamical theory, the 
Lagrangian (2.5) must exist as a well-defined (finite) 
function of the ;Os and ~'s (modulo an additive 
constant volume integral) for applicability of the 
method. Then by integrating the Schrodinger equation 
(2.7), quantum states are obtained for the reduced 
field theory, approximated as a system with N 
dynamical degrees of freedom. 

To illustrate the classical and quantum approxi­
mation methods discussed above, let us consider the 
theory based on the Lagrangian density 

L = (1))2 - (VcW - f.l2cp2 (2.8) 

for a real scalar meson field cp = cp(x, t) of constant 
positive mass lif.l. We seek approximate solutions5 

to the associated linear field equation in the form of 
plane waves, 

cp = ;p == (2.9) {
~ sin k • x for x in V 

o for x not in V 

with k a constant and; = ~(t). With Eqs. (2.8) and 
(2.9) the Lagrangian (2.5) is evaluated as 

L = H~2 - (k2 + f.l2);2]V (2.10) 

for V» Ikl-3• Hence, the classical dynamical 

6 It is important to note that the approximate solution must 
correspond qualitatively to a rigorous solution of the field theory, 
for otherwise false results follow. This is exemplified by the spurious 
approximate particlelike "solutions" to the linear field equation 
derived from (2.8), say approximate "solutions" of the form 

if> = if. == (const) ~-l exp -Ixl/~ 

with; = ~(t); formal application of the method leads to bounded 
periodic classical dynamics for ; [whereas spatially localized and 
temporally periodic solutions to the theory based on Eq. (2.8) are 
precluded rigorously) and to similarly false results for the associated 
quantum states. 

equation (2.4) 
(2.11) 

is an exact relation for this simple example. Likewise, 
the quantum dynamical equation (2.7) 

[ 

1i2 02 V ] 
iliO'lflot = - 2 V 0;2 + '2 (k2 + f.l2);2 'If (2.12) 

is a precise relation, yielding the exact energy eigen­
values and eigenstates for the quantized simple 
harmonic oscillator associated with the plane wave 
(2.9) in the quantum field theory for (2.8). 

Another illustration of the approximation methods, 
a very simple nonlinear example, is provided by the 
spatially homogeneous solutions to the generic 
nonlinear field theory with (2.1), solutions of the 
form 

:r {; = ;(t) 
cp='I'== o 

for x in V 

for x not in V. 
(2.13) 

The Lagrangian (2.5) is 

L = L(;, ~, O)V, (2.14) 

and hence the classical dynamical equation (2.4) 

OL _ .!i (0:) = 0 (2.15) 
0; dt o~ 

is in fact the exact relation obtained by putting Eq. 
(2.13) into the field equations (2.3). Furthermore, 
the quantum dynamical equation (2.7) obtained from 
Eq. (2.14) is a physically reasonable one-degree-of­
freedom correspondent to the Schrodinger functional 
differential equation for the quantum field theory.6 

III. DYNAMICS OF PARTICLELIKE 
SOLUTIONS TO A NONLINEAR 

MODEL SCALAR THEORY 

In this section, we use the Rayleigh-Ritz approxi­
mation method to analyze the internal dynamics of 
particlelike solutions to the solvable nonlinear model 
theory based on the Lagrangian density! 

L = (6)2 - (V(1)2 + g(16 (3.1) 

with (1 a real scalar field and g a positive physical 
constant. The associated field equation 

I} - 'V2(1 - 3g(15 = 0 (3.2) 

is satisfied rigorously by the singularity-free spherically 
symmetric static particlelike solutions 

(1 = 8o(x) == Z(Z4g + IxI2)-! (3.3) 

in which the "size parameter" Z is a free nonzero 

• G. Rosen, Phys. Rev. Letters 16, 704 (1966); Phys. Rev. 160, 
1278 (1967). 
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constant. By direct integration, the total field energy 
or classical "particle rest mass" is obtained as 

f 2 63 7i2 _ 
[(VOo) - gOo] d x = 2g! = mo, (3.4) 

a quantity independent of Z. We give a systematic 
derivation of the static particlelike solutions (3.3) in 
Appendix A and a systematic derivation of the time­
dependent self-similar particlelike solutions to the 
field equation (3.2) in Appendix B, employing appro­
priate group-theoretic techniques in order to obtain 
these exact solutions. 

Now consider an approximate solution to Eq. 
(3.2) of a form that generalizes (3.3), 

° = 6 == za2 + IxI2)-!, (3.5) 

in which the "effective particle radius" ~ = ~(t) is 
introduced as a positive function of time. By putting 
(3.5) into (3.1), the Lagrangian density is expressed as 

r. = [Z2(~2t2 - /X/2) + Z6g](~2 + /X/ 2)-3 (3.6) 

and thus the Lagrangian 

L = (1TZ)2(r _ ~ + Z4g) (3.7) 
4 ~ ~ e 

is obtained by integration over all x. From Eq. (3.7) 
it follows that the classical dynamical equation (2.4) 
is in this instance 

2;~ - ~2 + 3(~2g - 1) = 0 (3.8) 

with the unstable equilibrium value ~ == Z2g! evi­
dently a solution, producing (3.3) from (3.5). 
More generally, the energy integral of (3.8) 

(1TZ)2 [r + ~ _ Z4gJ = m == const (3.9) 
4 ; ; e 

shows that ; eventually goes to either zero or infinity 
as t increases and that no periodic classical motion is 
possible. 7 

With the simplest Hermitian ordering ofthe momen­
tum term, (3.7) yields the Schrodinger equation 

ilio""jot = [_ ~l;~ + (1TZ?(~ _ Z4g)]"". 
(7iZ)2 o~ 0; 4 ;;3 

(3.10) 

We have the boundary conditions"" = U at ~ = 0 
and ; = 00 since negative and infinite values of ~ are 
excluded. Stationary quantum states derived with 

7 A spatially localized and temporally periodic solution is not 
precluded by the recent theorem [G. Rosen, J. Math. Phys. 7, 2071 
(1966)], because the energy density associated with (3.1) is not 
positive definite. 

(3.10) are of the form 

"" = w(~; m)e- imtJ
\ (3.11) 

where m denotes the eigenvalue of total energy or 
particle rest maSf> and we;; m) satisfies the equation 

[ 
d2 1 d (7iZ)4(3 Z4g) 
d~2 + ~ d~ - 41i2 ~2 - 7 

+ -- we;' m) = 0 (3.12) 
(7iZ)2mJ 

1i2~ , 

for ° ~ ~ < 00, subject to the boundary conditions 
w(O; m) = w( 00; m) = O. An acceptable physical 
interpretation is not available for states with m 
negative in the context of the closed theory being 
studied, and therefore such states are excluded from 
consideration here. 8 The special academic solution to 
(3.12) with m = 0 is given exactly by 

w(~; 0) = (const)JY/2(1T2Z4gtj21i~) 
y == ../3 (7iZ)2/1i, 

(3.13) 

that is, in terms of a Bessel tunction of order !y. 
Since Eq. (3.12) implies the asymptotic behavior 
w(;; O)~ (const)~-YJ2 for ~ » (1T2Z 4g!j21i), itfollows 
that Eq. (3.13) is in V(O, (0) with the Hilbert norm 
IIwll == <J: Iwl2 d~)t [concomitant with the Hermitian 
ordering in (3.10)] provided that y > 1. For the cases 
with m ~ mo == 1T2j2g!, Eq. (3.12) admits free waves 
and short-lived resonances, quantum states of no 
practical interest in the present theory. Turning to the 
physically interesting cases with m greater than zero 
but less than mo, we find that the wavefunction is 
contained in the region 0 < ~ ~ t by a "potential 
barrier" in the region t ~ ; ~ ~", where 

;' == ~ Z2g! and ~"== 3(1TZ)2j4m. (3.14) 
../3 

The physically admissible solutions to (3.12) with 
o < m < mo are thus not in V(O, (0), having the 
asymptotic behavior 

{

(const) JYll1T2Z4g!j2M) for ; ~ f' 

w(~; m)~ (const) ;-t sin [(21TZ(m~)!/Ii) + (const)] 

for ; ~ ;", 
(3.15) 

and hence there are no absolutely stable "bound" 
stationary states with m positive. However, for values 
of y greater than unity metastable states are obtainable 

8 Since Eq. (3.10) is dominated by an effective ;-' "attractive 
potential" about; = 0, there are an infinite number of purely 
formal (unphysical) "bound" states with the total energy eigenvalue 
m negative [e.It .• R. M. Spector, J. Math. Phys. 5, 118S (1964)]. 
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by matching the asymptotic forms (3.15) at ~ = ~" and 
by taking a value of m for which Iw(~; m)12 is rela­
tively small [although only asymptotic to (const) ~-l] 
for values of ~ > ~". We estimate A, the decay 
constant or characteristic rate of exponential dis­
solution of a metastable state, by means of a Laue­
type formula familiar from the elementary theory of 
alpha disintegration, 

A '"" (m/Ii) IW(~"; m)/w( ~/; m)12 

== (FREQUENCY OF ASSAULT ON 

THE "POTENTIAL BARRIER") 

X (PROBABILITY OF PENETRATION). (3.16) 

Thus, using the first asymptotic expression in (3.15) 
and the values (3.14), we have the approximation 

A '" (m/Ii)[JY/2(2Z2g1m/31i)/JY/2(/j (-rrZ)2/21i)]2 

= (m/Ii) [Jy/2(ym/3.h mo)/Jr/2(y/2)]2. (3.17) 

Now with m < mo the finite zeros of the Bessel 
function of order iy are not accessible to the argu-
ment ym/3.,/3 mo in Eq. (3.17), and so the mass 
eigenvalues for physically admissible metastable 
states comprise a continuum of positive m « mo for 
which (3.17) reduces to the simple expression 

A '"" (m/Ii)(2m/3.J3 moY. (3.18) 

Hence, in the semiclassical range y » 1 the metastable 
states are characterized by a very small decay constant; 
the classical theoryl only admits m ;:::::< mo and gives 
A '"" 6.6(mo/li)y-l. 

In summary, the metastable quantum states asso­
ciated with particlelike solutions to the nonlinear 
model scalar theory based on (3.1) correspond quali­
tatively to the metastable particlelike solutions of the 
classical theory with Z2 large. The principal effect 
of quantization is to suppress the decay rate substan­
tially for large values of the dimensionless parameter 
y == .J3 (1TZ)2/1i. With the admissibility of a positive 
continuum of values for the eigenvalue mass m « mo, 
such metastable quantum states are not in the appro­
priate V(O, (0), and no absolutely stable "bound" 
stationary states are realized by the theory. Extended 
analysis shows that these conclusions hold true for 
any alternative Hermitian ordering of the momentum 
term in Eq. (3.10), with or without an alternative 
Hilbert-norm definition (concomitant with certain 
Hermitian orderings). Further analysis demonstrates 
that quantization may enhance metastability but does 
not give rise to absolute stability for other approximate 
particlelike solutions which differ from Eq. (3.5) in 

functional form.9 In the following section we investi­
gate the approximate effects of quantization on the 
particlelike solutions to a class of nonlinear model 
multicomponent field theories, some of the latter 
particlelike solutions exhibiting absolute stability on 
the level of the classical theory. 

IV. DYNAMICS OF PARTICLELIKE SOLUTIONS 
TO NONLINEAR MODEL SCALAR­

SPINOR THEORIES 

We now consider a class of more complicated 
nonlinear model theories based on the generic 
Lagrangian d'!nsity2 

I: = (0)2 - (V(j)2 + ~ (1fJt1P - 1Pt1fJ) 
2 

+ i1fJta. V1fJ + G(j21fJt1fJ (4.1) 

with 6 a real scalar field, 1fJ a two-component complex 
Weyl spinor field (1fJt its Hermitian adjoint, a the 
Pauli matrices), and G = G(K) an arbitrary differ­
entiable real function of the positive invariant scalar 
K == 1fJt1fJJ(j4. The associated field equations admit 
rigorous singularity-free spherically symmetric static 
solutions of the form 

6 = 60(x) == ±(3aH-l)1(a2 + Ix1 2r 1, 

1fJ = 1fJo(x) == 3aH-I K1(a2 + IxI2)-!(a + ia • x)u, 

dG 
H = H(K) == G + K -, (4.2) 

dK 

where u is a constant Weyl spin or normalized to unity, 
u t u = 1, K is a constant positive root of the equation 

R2 + 3K(2R - 3G) = ° (4.3) 

for which H:;6 0, and the "size parameter" a in Eq. 
(4.2) is a free nonzero constant with the sign of H, 
so that (aR-I) is a positive quantity. The total field 
energy or classical "particle rest mass" is obtained as 

f[(V(jo)2 - i1fJ~a. V1fJo - G(j~1fJ~1fJo] d~ 

= ·irr2(1 + !KH-1
) IH-II == mo, (4.4) 

a quantity independent of the size parameter a. If the 

• For instance, particJelike solutions of the spherically symmetric 
self-similar form (see Appendix B)Jj = ~-tx(ixl/~), in which X is a 
prescribed function, give L = !m.~2 - mo , 

m. == 1 fo 00 [2AX'(A) + X(A)]241TA' dA, 

mo == loo[X'(A)' - gX(A)6j41TA' dA. 

It follows that admissible stationary states with IJ! = 0 at ~ = 0 are 
sinusoidal in ~ and therefore not in L2(O, OCJ). 
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root of (4.3) is such that -3K < H < -3K/2, or 
equivalently such that -K < G < -3K/4, then the 
particlelike solutions (4.2) are energetically stable 
with respect to changes in their functional form 
induced by infinitesimal spatial dilatations. 

A dynamical generalization of (4.2) is given by 

() = ±(3aH-l)1(~2 + /xI2)-1, 4.5 

tp = 3K!H-l(~2 + IxI2)-!(lal ~ + iaa· x)u, ( ) 

where the "effective particle radius" ~ = ~(t) is 
introduced as a positive function of time and the 
quantity K == tp t tp/()4 is taken to be a constant positive 
root of Eq. (4.3), as in the case of the rigorous static 
solutions (4.2). We evaluate the Lagrangian density 
explicitly by putting (4.5) into (4.1), 

£. = 3aH-l[~2~2 - Ixl2 + 31al KH-l 

X (uta. xu~ - 3~) + 9a2H-2KG] 

X (;2 + IxI2)-3, (4.6) 
and the Lagrangian 

L = 37T2aH-l(~2 _ ~ + a2 + 3H-1K(2a2 _ 3Ial)) 
4 ; ~ ~3 e ~2 

(4.7) 

follows by integrating (4.6) over all x and using (4.3) 
to eliminate G. In this instance the associated classical 
dynamical equation (2.4) takes the form 

2~~ - ~2 + 3 (a
2 

_ 1) + 18H-1K(a
2 

_ M) = 0 
~2 ~2 ~ 

(4.8) 

with the equilibrium value ~ == lal evidently a solution, 
producing (4.2) from (4.5). Elementary analysis 
applied to (4.8) indIcates that the ; == lal solution is 
dynamically stable for - 3K < H < 0,1° and further­
more if the latter condition is satisfied by H at the 
root of (4.3), then (4.8) also admits the unstable 
equilibrium solution ; == (6 /H-ll K - 1) Ia/. For 
-6K < H < -3K, Eq. (4.8) admits the stable 
equilibrium solution ~ == (6IH-11 K - 1) lal as well 
as the unstable equilibrium solution ~ == lal. Moreover, 
the general energy integral 

37T
2
aH-l [r + ~ _ a2 + 3H-1K(3Ial _ 2a

2
)] 

4 ~ ~ ~3 ~2 e 
= m == const (4.9) 

shows that periodic classical motion about the stable 
equilibrium ~ = lal for -3K < H < 0 is possible with 

10 Energetic stability of the particlelike solution also requires the 
condition 0 > H> -3K, and the agreement here for the energetic 
and dynamical stability conditions lends support to the conjectured 
general equivalence of the stability criteria (Ref. 2). 

m positive if m' < m < m", where 

m' == t7T21 H-11 (2 - 3 IH-11 K) 
and 

m" == t7T2IH-11 (9IH-11 K - 2)(6IH-11 K - 1)-2; 

as H -- - 3K this bounding condition on m reduces to 
7T2/4K < m < 7T2/4K, thereby precluding periodic 
motion, while as H -- 0, the bounding condition 
relaxes to m < 37T2/16K. The more stringent bounding 
condition with m' and mil interchanged, mil < m < 
m', follows from (4.9) for periodic motion about the 
stable equilibrium ~ = (6 IH-11 K - 1) lal for -6K < 
H < - 3K. In all other cases ~ eventually goes to 
either zero or infinity as t increases, a fortiori and 
irrespective of the value of m if either H ~ -6K or 
H>O. 

With the simplest Hermitian ordering of the momen­
tum term, the Schrodinger equation obtained from 
(4.7) admits stationary quantum states of the form 

tp = w(;; m )e-imtlli, (4.10) 

where m denotes the eigenvalue of total energy or 
particle rest mass and we;; m) satisfies the equatior 

{ 
d2 1 d (37T

2
a)2[ 3 a

2 

d~2 + ~ d; - 2liH r - ~4 

+ 3H-1K(3 Ial _ 2a
2

)] + 37T2am}W(~' m) = 0 ;3 ;4 1i2H; , , 

(4.11) 

for 0 ~ ; < 00, subject to the boundary conditions 
w(O;m)=w(oo;m)=O. For small values of ~ 

physically admissible solutions to (4.11) have the 
asymptotic behavior 

we;; m) 

[

;! sin [(H-1K + i}(y lall~2 ;) + (const)] 

for H-1K>-1 

r-.J (const) Jy(Y(laI/2;)!) for H-1K = -t 

l;! exp [-(IH-11 K - l)(y lal/~~:)] 1 

for H K < -0, 

(4.12) 

where y == 3~3 7T2aH-1/1i. On the other hand, for 
large values of ;, physically admissible solutions to 
Eq. (4.11) with m > 0 take the asymptotic form 

we;; m):::: (const) ;-1 sin [(27T(3aH-lm~}'l/li) 

+ (const)], (4.13) 

and therefore the physically admissible solutions are 
not in £2(0, (0). Hence, there are no absolutely stable 
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"bound" stationary quantum states with m positive, 
notwithstanding the fact that some stable particlelike 
solutions appear on the level of the classical theory. 
Metastable states are obtainable, however, for values 
of y greater than unity if H-1K ~ -l, that is if either 
H ~ -6K or H > 0, and for positive mass eigenvalues 

m « min {J7T2j4K, 91T2 IH-1Ij4(! + 2H-IK)!} 

[mass eigenvalues generally very small compared to 
the classical quantity (4.4) with H-1K ~ -l, as 
shown by simple analysis]. With the latter condi­
tions satisfied, the wavefunction i'i. contained in the 
region ° z ; z ;' by a "potential barrier" in the 
region ;' z ; z ;", where 

;' == max {3aH-1K, (! + 2H-1K}i;; lal} 
and (4.14) 

;" == 91T2aH-lj4m, 

the solutions to Eq. (4.11) decreasing like we;; m)::::: 
(const);-Y/2 in the region of the "potential barrier" 
;' z ; z ;". The decay constant or characteristic 
rate of exponential dissolution of such a metastable 
state is estimated by the Laue-type formula 

).::::: (mjli) Iw(;"; m)jw(;'; m)12 

::::: (mjli)(;'W'Y 

= max {(mjli)(4Kmj3rr2y, 
(mjli)[4(! + 2H-1K)!mj91T2IH-1In, (4.15) 

which shows that in the semiclassical range y » I, the 
metastable states are characterized by a very small 
decay constant. 

In summary, the quantization of particlelike 
solutions to the nonlinear model scalar-spinor theories 
based on (4.1) produces metastable stationary states 
but no absolutely stable "bound" stationary states. 
The metastable states are obtained for values of K [a 
positive root of (4.3)] such that H-1K ~ -l, positive 
values of the eigenvalue mass 

m « min {31T2j4K, 91T2 IH-1Ij4(! + 2H-IK)!}, 

and values of the dimensionless parameter y == 
3..)31T2aH-ljli greater than unity, large values of y 
giving a very small decay rate. It is interesting that all 
of the quantum states associated with absolutely 
stable particlelike solutions in the classical theory, 
solutions for which H-1K < -l, are unstable, 
quantization effecting the rapid dissolution of such 
particlelike concentrations of field energy. Of course 
other nonlinear field theories, perhaps of a more 
physical and less academic character, may admit 
absolutely stable stationary quantum states associated 
with particlelike solutions. 
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APPENDIX A: CONJUGATION GROUP 
INV ARIANCE AND RIGOROUS 

SINGULARITY-FREE STATIC 
P ARTICLELIKE SOLUTIONS 

Let us consider the time-independent solutions 
(J = (Jo(x) to the field equation (3.2), the solutions 
which satisfy 

V'280 + 3g8g = 0. (AI) 

Associated with any Oo(x) is a conjugate solution 

00 = Oo(x) == ~ (Jo(i), i == oc2x/lxl2 (A2) 
Ixl 

in which oc is a fixed nonzero constant, because the 
operator relation 

2 a2 lil4 a2 2 lil2 _ a 
V' ==-- =--- ---x·-

OXiOXi oc4 aXiOXi oc4 
• oXi 

lils a2 1 ==---0- (A3) 
oc4 aXiaXi Iii 

implies that Eq. (A2) also satisfies Eq. (AI): 

2- lil S a2 1 oc 
V' 00 = -4 ::1- ::1- 0 -1_1 0 1-1 Oo(i) 

oc vXivXi x X 

lil S a20o(i) 
= -;;,so ax;e)x

i 

= -3g lil
s 
Oo(it == -3gtfg. (A4) 

ocS 

From Eq. (A2), it follows that the conjugation opera­

tion squares to the identity eo == 00 , and so the 
identity operator and conjugation operation are 
representative elements for the discrete group of order 
two for any fixed (nonzero) value of oc. A solution of 
Eq. (AI) is self-conjugate or invariant with respect to 
this conjugation group if eo = 00 , that is, if 

-0 - - 8 x oc (OC
2
X) 

Ixl 0 Ixl2 - o( ). (AS) 

The fact that Eq. (AI) implies Eq. (A4) guarantees 
the existence of self-conjugate solutions with the 
functional property (AS). Moreover, it is practical to 
seek rigorous closed-form self-conjugate solutions to 
(AI), 

To illustrate the last remark and demonstrate the 
utility of the condition (AS), we derive the self­
conjugate spherically symmetric solutions to Eq. (AI), 
necessarily of the functional form 

Oo(x) = Ixl-t'T('f}), 'f} == Ixl + ~, [oc > 0], (A6) 
I:J. Ixl 
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where T( Tj) is a function of the conjugation-invariant 
Tj. By putting (A6) into (AI), we obtain a total 
differential equation for T(Tj), 

2 ) d
2
T dT 1 3 5 ° ( ) (Tj - 4 - + 'YJ - - 4,'T + gT = A7 

drl d'YJ 

with the immediate first integral 

('YJ2 - 4)(:~r - iT2 + gT
6 

= const. (AS) 

For a finite solution (A6) at x = 0, we have T( 00) = 0, 
and thus the constant of integration on the right side 
of (AS) vanishes. Then the final quadrature is per­
formed easily to yield 

T('YJ) = ±g-t[(cosh C)'YJ + (sinh C)('YJ2 - 4)t]-t, 
(A9) 

where C is a constant of integration. The solution (3.3) 
is thereby derived systematically by substituting Eq. 
(A9) into Eq. (A6) and setting Z == ±g-tClte-C/2. 

APPENDIX B: DILATATION GROUP INVARIANCE 
AND RIGOROUS SINGULARITY-FREE SELF­

SIMILAR PARTICLELIKE SOLUTIONS 

If fJ = fJ1(x, t) satisfies the field equation (3.2), then 

fJ). = fJ;.(x, t) == JJfJ1(Ax, At) (BI) 

also satisfies Eq. (3.2) for all real A > 0. Hence, the 
rigorous solutions to Eq. (3.2) fall into equivalence 
classes, solutions in an equivalence class being 
generated by the continuous one-parameter group of 
dilatation transformations. A general theoremll guar­
antees the existence of dilatation group invariant or 
so-called self-Similar solutions to (3.2), for which 

At 01(AX, At) = 0l(X, t) (B2) 

for all real A > 0; these self-similar solutions take the 
general form prescribed by (B2), 

0l(X, t) = t-tX(x/t) [t > 0], (B3) 

where X satisfies the equation obtained by putting Eq. 
(B3) into (3.2). 

Let us now consider the spherically symmetric 
specialization of (B3), 

0l(X, t) = ±(4g)-tlxl-t rm, ,== IXI 2/t2
, (B4) 

with y satisfying 

as _ ,2) d2~ + (1-,2 _ 0 dy + /6Y - 1\y5 = ° (BS) 
d, d~ 

as a consequence of (3.2). The first integral of (BS) is 
obtained immediately as 

16a3 - r)(~~r + y2 - y6 = A (B6) 

11 A. J. A. Morgan, Quart. J. Math. (Oxford) 2, 250 (1952). 

in which A is identically constant for all values of t if 
the physical solutions are required to be of function 
class CI, piecewise C2, but only piecewise constant if 
wave-crested solutions of function class Co, piecewise 
C2, are also admissible.12 In the former case with 
A == const and with a finite solution (B4) at x = 0, 
we have yeO) = 0, and hence the constant A vanishes. 
Then the final quadrature is performed easily to yield 

ym = f[B + (1 - B2)ta - 1)t]-t (B7) 

in which B (> -1) is a constant of integration. The 
spherically symmetric self-similar solution obtained 
by putting (B7) into (B4) is physically admissible in 
the region 

Ixl ~ (1 - B2)-tt for -1 < B < 0, 

in the region 
Ixl > t for B = 0, 

in the region 
Ixl ~ t for ° < B < 1, 

and in the region 

Ixl S t for B > 1, 

only the trivial (spatially homogeneous) solution for 
B = 1 being admissible for all values of Ixl. However, 
singularity-free solutions of function class Co, piece­
wise C2, are obtainable for all values of Ixl with A in 
(B6) piecewise constant; for example, with 

A == {O for ° S , < ~cr, (BS) 
Acr for ~cr < t 

where the positive constant Acr (>2/3)3) is related to 
'cr (> 1) by 

i 'cr
i 

dy 1 • -1 r-t 
t = 2" sm c"cr, 

o (Acr _ y2 + y6) 

we obtain the wave-crested family of solutions 

yeO = ,t for ° S , S ~cr, 

(B9) 

i
Y(') dy t 

---'--2--6"'-t = t sin-1 ~- for ~cr S ~. 
o (Acr - y + y) 

(BIO) 
In contrast to the solutions (B7), which at best are 
asymptotically constant as ,-+ 00, the singularity­
free solutions (BW) give ya) -+ tAlrt-t as t -+ 00, 

and so the associated particlelike solutions (B4) are 
well-localized in space, falling off as /x/-i for large 
values of Ixl. Note that the spherical surface t = tcr 
has the dynamical character of a supersonic shock 
wave with the velocity /xlll = tlr greater than unity. 

12 Rigorous examples of self-similar wave-crested solutions to a 
nonlinear partial differential equation are also reported in , G. Rosen, 
J. Math. and Phys. 45,235 (1966). 
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Proof that Successive Derivatives 
of Boltzmann's H Function for a Discrete Velocity Gas Alternate in Sign 
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It has been conjectured by McKean that the particular property of Boltzmann's H function which 
singles it out from a wide class of functionals of the Boltzmann solution may be that its successive 
derivatives alternate in sign. We consider here the proof of this alternating property for a discrete 
velocity gas. For the linearized-model Boltzmann equation, the proof is trivial. For the fu\1 (Le., non­
linear~ model Boltzmann equation, the proof is shown to be equivalent to demonstrating the positivity of 
a partIcular polynomial. The proof of this property is then demonstrated. It is also shown that H(nl, like 
H(ll, is zero only for the equilibrium distribution. 

I. INTRODUCTION 

I T is generally recognized that Boltzmann's H 
theorem stands as one of the great results of the 

kinetic theory. Boltzmann's somewhat imprecise 
interpretation of this result set the stage for one of the 
great controversies of physics history, 1 which included 
among its participants such notable non-physicists as 
the philosophers Nietzche and Spencer. In their 
masterful Encyklopedia article,2 the Ehrenfests pro­
vided for the first time a clear understanding of what 
was, and what was not, implied by the H theorem, 
thus bringing to a close the controversy which had 
surrounded it since its birth. Until recently, the only 
efforts toward developing a deeper understanding of 
Boltzmann's result were confined almost exclusively 
to the related problems of ergodic theory.3 However, 
in the past few years these problems have been re­
examined by Kac4 and by Grad,5-7 who have brought 
to light several important points not considered by 
the Ehrenfests relating to the general nature of 
irreversibility. 

More directly related to Boltzmann's result, which 
pertains only to systems described by the Boltzmann 

1 An excellent account of this controversy and many of the 
original papers are contained in the book by S. G. Brush, Kinetic 
Theory (Pergamon Press, Inc., New York, 1966), Vol. 2. 

2 P. Ehrenfest and T. Ehrenfest, The Conceptual Foundations of 
the Statistical Approach in Mechanics, translated by M. J. Moravcsik 
(Cornell University Press, Ithaca, New York, 1959). 

3 Ja. G. Sinai, Dokl. Akad. Nauk SSSR 153,1261 (1963) [English 
transl.: Soviet Phys-Doklady 4,1818 (1963)] and references therein 
contains the most recent results. For an account of, and references to, 
earlier work, see I. E. Farquhar, Ergodic Theory in Statistical 
Mechanics (Interscience Publishers, Inc., New York, 1964). 

4 M. Dresden, in Studies in Statistical Mechanics (North-Holland 
Publishing Company, Amsterdam, 1962), Vol. l. 

5 H. Grad, J. Chern. Phys. 33, 1342 (1960). 
• H. Grad, Comm. Pure Appl. Math. 14, 323 (1961). 
7 H. Grad, "Levels of Description in Statistical Mechanics and 

Thermodynamics," to appear in The Delaware Seminar in the 
Foundations of Physics. We are grateful to Professor Grad for 
sending us a preprint of this article. 

equation (Le., a dilute, neutral gas) are the works of 
Moran,S McKean,9.1O and the later work of Kacll 

and Grad.12 Here some of the deeper problems 
associated with the H theorem are posed and solved 
for the first time for particular models of, and approxi­
mations to, the full (Le., nonlinear) Boltzmann 
equation. One such problem which is stated, but only 
partially solved, is the following: what are the partic­
ular properties of the H function which single it out 
from a wide class of functionals of the Boltzmann 
solution? McKean10 has conjectured that such a 
property may be that the successive derivatives of 
the H function alternate in sign; i.e., dH/dt ~ 0, 
d2H/dt 2 ~ 0, d3H/dt 3 ~ 0, etc. In order for this 
conjecture to be meaningful, it must first be established 
that the H function in fact possesses this alternating 
property. No such result is known either for the full 
Boltzmann equation or any of the models of, or 
approximations to it. 

For the full Boltzmann equation, or even for the 
much more tractable linearized Boltzmann equation, 
the alternating property described above appears 
very difficult to show. We have, however, been able 
to prove the general result for what we believe is 
a reasonable, nonlinear model of the full Boltzmann 
equation; this is the Boltzmann equation for a 
discrete velocity gas. This model of a gas was first 
introduced, with surprisingly good quantitative results, 
by MaxweIl13 to obtain the equation of state for an 
ideal gas. It has subsequently been used with great 
success in describing boundary-value problems in 

8 P. Moran, Proc. Cambridge Phil. Soc. 57, 833 (1961). 
• H. P. McKean Jr., Z. Wahrsheinlichkeitstheorie 2, 167 (1963). 
10 H. P. McKean Jr., Arch. Ratl. Mech. Anal. 21, 343 (1966). 
11 M. Kac, Probability and Related Topics in the PhYSical Sciences 

(Interscience Publishers, Inc., New York, 1959). 
12 H. Grad, J. Soc. Indust. Appl. Math. 13,259 (1965). 
13 J. C. Maxwell, Scientific Papers II (Cambridge University 

Press, Cambridge, England, 1890), p. 26. 
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kinetic theory,14·15 and we have also previously 
used it to consider the extension of the H theorem to 
a moderately dense gas. I6 

In the next section we briefly describe this model, 
and formulate the proposition we are considering in 
terms of the model variables. In Sec. III we prove for 
the model that d2k-IH/dt2k-l::;; 0, d2kH/dt 2k ~ ° 
(k = 1, 2, ... ), where H is the analog for the model 
of Boltzmann's functional, H[fJ = f dvf(v) lnf(v). 

n. FORMULATION OF THE PROPOSITION 
FOR THE DISCRETE VELOCITY GAS 

A. Discrete Velocity Gas 

The model we consider is a rarefied system of n 
particles which move with constant speed in a fixed 
number of directions (a discrete-velocity gas). Neither 
the number of velocity directions allowable nor the 
dimensionality of the system affects the qualitative 
results we are interested in (neglecting degenerate 
situations, e.g., one dimension or two dimensions and 
either one or two velocity directions). For this reason 
we restrict ourselves to the simplest meaningful case, 
which is two dimensions and four (orthogonal) 
velocity directions. 

Let the number of particles moving in the direction 
of the positive y axis (the 1 direction) be N1 , so that 
Na is the number moving in the direction of the 
negative y axis, and N 2 , N4 are the number moving, 
respectively, in the direction of the positive and 
negative x axis (so that we have a standard xy coordi­
nate system with directions numbered clockwise 
starting with the positive y direction). Then the 
"Boltzmann equation" for the model isl6 

dn l dn3 
- = - = (n2n4 - n1n3), 
dt dt 

(1) 

Here ni = Ni/n, and we have chosen our units so that 
iB = 1, where B is the mutual collision frequency for 
"head on" collisions. This "Boltzmann equation" 
has as its basis the two conservation laws (conser­
vation of number implies conservation of energy in a 
collision), a stosszahlansatz for about-to-collide 
particles, and the assumption of symmetrical scattering 
through binary collisions, and thus corresponds for 
our model to the Boltzmann-equation description for 
an actual gas. 

This model is used in the spirit one must generally 

14 J. Broadwell, J. Fluid Mech. 19,401 (1964). 
15 J. Broadwell, Phys. Fluids 7, 1243 (1964). 
,. S. Harris, Phys. Fluids 9, 1328 (1966). 

adopt when attempting so simple a description of a 
complicated system: We consider the proof of a given 
proposition to be an indication that the more com­
plicated system also exhibits this behavior (and we 
must not let the venerability of the Boltzmann equation 
awe us into forgetting that it too is only a model, 
albeit a very good model, in a particular well-defined 
regime). How strong this indication is, of course, 
depends on how well the model reproduces those 
features of the complicated system which are of partic­
ular interest. Although at first sight the discrete 
velocity gas seems quite simple, it has a decided 
advantage over many other more elegant models in 
that (i) the kinetic equation (1) is nonlinear, yet (ii) 
for a wide class of problems (1) is exactly solvable. 

B. Formulation of the Problem 

As we have shown elsewhere,16 the proper analog of 
Boltzmann's H function for the discrete velocity gas 
model is 

H[ni ] = .2 ni In ni • 
(all velocities) 

Differentiating this expression, we obtain for the 
model we are consideringl7 

dH (dni) - = "" - Inn· < U dt "" dt ,-, 

d
2
H "" [d

2
ni 1 I (dni)2] -="" - nni +- - . 

dt2 dt2 ni dt 

The inequality indicated in the first equation is the 
statement of the H theorem for the model, the proof 
of which is trivial. That d2H/dt2 ~ ° then follows 
immediately; using (1) and the normalization require­
ment.2 ni = 1, we have 

d
2
H = _ dH + .2 1. (dni)2 == _ dH + A[n

i
] ~ 0. 

dt2 dt ni dt dt 
(2) 

The inequality is a direct result of the H theorem since 
ni ~ 0. Also, since A [nil is nonnegative, we see that 
the equality is only obtained for the equilibrium 
distribution. 

An expression for dk+2H/dtk+2 can be obtained by 
differentiating (2) k times: 

dk+2H/dtk+2 == H(k+2) = _H(k+l) + A(k)[n i ]. (3) 

Since H(l) ::;; 0, showing A(2k) ~ 0, A(2k+l) ::;; 0, for 
all k, will then constitute a proof, for the discrete 
velocity gas, that the successive derivatives of H 
possess the alternating property. 

17 When the limits of summation are omitted, itis to be understood 
that the SUbscript i is summed from 1 to 4. 
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In the next section we first digress to prove (trivially) 
the desired result for the linearized-model Boltzmann 
equation. We then extend this result to the full model 
Boltzmann equation. 

m. PROOF OF THE ALTERNATING PROPERTY 

A. Proof for the Linearized-Model 
Boltzmann Equation 

Let us first consider the linearized version of the 
model Boltzmann equation. Writing ni = nOiO + 4hi), 

substituting into (1), and retaining terms linear in hi' 
we obtain the analog for the discrete velocity gas of 
the linearized Boltzmann equation: 

dhl dha dh2 dh 4 - = - = - - = - - = (h2 + h4 - hI - ha). 
dt dt dt dt 

(4) 

no; is the equilibrium value of ni , which, for the case 
we are restricting ourselves to, a spatially homoge­
neous system in the absence of external fields, is t.16 
The corresponding linearized H function for the 
model is 

so that 

dB ~ h dhi h 2 - = 4"", i - = -4(hl + a - h2 - h4) :::;; 0, 
dt dt 

cPH _ 2 [(dh;)2 h cPh;J --4 - + .-
dt2 dt' dt2 

Differentiating this last equation k times, we obtain 

H<k+2) = _H(k+l) + (-I)k+22k2 (dhi/dt)2, (5) 

so that, since H(2l ~ 0, it is at once obvious that for 
this case the alternating property is established. 
Further we see also that since both terms on the 
right-hand side of (5) have the same sign for all 
k, H(k+2) = ° only for the equilibrium distribution. 

B. Proof for the Full Model Boltzmann Equation 

We wish to show that for dni/dt given by the full 
model Boltzmann equation (1), 

A(2k)[ni] ~ 0, A(2k-l)[ni ]:::;; 0, k = 1,2," . , 

where from (2) 

A [nil = 2 (l/n i )(dni/dt)2 == 2 Ai' 

It is of course sufficient to show the desired result for 
the summand; consider Al as an example (the following 
results will also be valid for the other Ai)' 

Let us consider the kth derivative of (nlAl): 

d
k
(nlAl) = ~ n(k-i)A(;) (k) 
d k "'" 1 1 .' t ;=0 ] 

where e) is the binomial coefficient, k!fj! (k- j)!. 

The above equation can be rewritten as 

A~k) = 1.[(_2)k(dnl)2 -~in~k-j)A~jl(~)] (6) 
n1 dt ,=0 ] 

since 
dk(nlAl)/dtk = (-2)k(dn1/dt)2. 

Equation (6) can be solved by iteration; doing this, 

we find 

A~k) = (_1)k(.!.dnl)2 f c~[.!. dn1] i, (7) 
nl dt i=O n l dt 

where 

k-l (k) 
C~+1 =2q 

r=O r 

and q = 2k. Equation (7) is valid for all the Alk), i.e., 
if the 1 subscript is replaced throughout the equation 
by any of the i, the resulting equation will be valid. 

From (7) it is clear that we need now only show that 
the polynomial in (l/nl)(dnl/dt), 

P(k) ==.f c~[.!. dn1] i, 
i=O nl dt 

is nonnegative. Further we must only consider values 
of x == (l/nl) dnl/dt which are negative, since the 
C~ are positive. Since the minimum value which x 
can assume is -1 (this occurs when n2n4 -+ 0, so that 
x -+ -na ~ -1), we must then consider the positivity 
of P(k) for -1 :::;; x :::;; 0. 

Writing out the first three and the rth term of P(k) , 
we have 

P(k) = 2k - (3 k - 2k) Ixl + (4k _ (2)3k + 2k) Ixl! 

_ ... + I(j + 1)k(~ - 1)( _1)i+1( -lxW-1 + ... 
i=1 ] - 1 

=:t:~I(j + 1)kC = ~)(_1)i+1(_IXIY-I. (8) 

The positivity of this sum can be shown most simply 
by making use of a probabilistic interpretation. To do 
this we expand (j + 1)k, change ind,ices on the j 
summation, and expand the resulting (j + 1)8 term, 
so that we have 
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where A * (t, r - 1) is the number of possible distri­
butions of t objects among r - 1 cells which leave 
none of the cells empty.IB The crucial point for our 
present interest is that A *(t, r - 1) ;:::: 0, and therefore 
P(k) ;:::: 0, which completes our proof of the alter­
nating property for the full model Boltzmann equation. 

It is possible to present a more explicit proof of the 
positivity property; this exploits the following identity: 

00 xt 
I - A*(t, r) = (e'" - 1Y. 
t=o t! 

Taking the nth derivative of both sides at x = ° then 

18 See, e.g., W. Feller, An Introduction to Probability Theory and 
its Applications (John Wiley & Sons, Inc., New York, 1957), Vol. I, 
Chap. 2. 

gives the desired result: 

A(n, r) = (onjoxn)[(e'" - 1Y]",=o ;:::: 0. 

We again note that H(k) will only be zero for the 
equilibrium distribution. 
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where E is the kinetic energy per unit volume. n the mean number density, k the Boltzmann constant, T 
the temperature, and Lln the deviation of density. This energy requirement associated with Lln must be 
taken into accoul).t when considering the energetic aspect of the growth of instabilities. The present work, 
which relies entirely on mathematical analysis, confirms the main results of an earlier nonrigorous 
calculation. 

1. INTRODUCTION 

I N plasma researches, it is useful to obtain theoretic 
bounds on the nonlinear turbulent fluctuations 

that grow out of a given unstable velocity distribution. 
This can be accomplished by means of energetic 
considerations, as has been demonstrated in some 
recent plasma literature.1- 4 The growth of the insta­
bilities requires the conversion of particle kinetic 
energy into electromagnetic field energy. The portion 
of kinetic energy available for this process can be 
readily calculated in accordance with the Liouville 
theorem, which is valid for a collisionless plasma. 

IT. K. Fowler, J. Math. Phys. 4. 559 (1963). 
• R. L. W. Chen. Phys. Fluids 9.761 (1966). 
aT. K. Fowler, Phys. Fluids 8. 459 (1965); 9, 1437 (1966). 
• C. S. Gardner, Phys. Fluids 6, 839 (1963). 

The ensuing field fluctuations are, therefore, neces­
sarily limited. The writer previously observed2 that 
on the same basis of Liouville invariance, a certain 
amount of kinetic energy must accompany the 
density fluctuations. This energy requirement must be 
reckoned with in addition to the field energy we have 
mentioned. Its exact amount can be found by solving 
an appropriate isoperimetric problem. A proper 
mathematical treatment of this problem is presented 
here for the first time, although a nonrigorous 
calculation has been made earlier.2 

The basic nature of this problem can be understood 
in qualitative terms. Consider the various states 
accessible to a plasma with a given initial condition 
in the sense that they comply with the constraint of 



                                                                                                                                    

2410 STEWART HARRIS 
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Liouville invariance. The state with the minimum 
kinetic energy is a state whose higher densities in 
phase space are located as near as possible to v = 0.4 

This would be a state of uniform spatial density. 
If we ask: What is the minimum kinetic energy of 
states of a given degree of density (spatial) inhomoge­
neity? The answer must be some value above that of 
the uniform state, since some portion of the plasma 
must give up its "preferred" positions in r, v space in 
order to realize the inhomogeneity. A quantitative 
treatment of this problem leads to the result that the 
additional energy is approximately !nkT(I~nl/n)2 per 
unit volume, where I~nl is the average density 
deviation. 

2. ISOPERIMETRIC PROBLEM 

We consider a one-component electronic plasma 
which obeys periodic boundary conditions within a 
large box of dimensions V. To obtain a lower bound 
on the kinetic energy for a given value of I~nl, we 
pose the following mathematical problem. 

Let f(r, v) be a nonnegative function defined for r 
within a cubic volume V of r space, and for v at any 
point throughout v space. Determinef(r, v) [or a class 
offer, v)] which minimizes &: 

& == f fLS tmv
2
f(r, v) dr dv, 

under the constraints that the following quantities 
be kept constant: 

<I>(IX) = const, 

I~nl = const, 

(2.la) 

(2.lb) 

where <I>(IX) is defined as the measure of the point set 
in the six-dimensional r, v product space wherein f is 
greater than IX, i.e., the set {r, v:f(r, v) > IX}. Then 
~n is the deviation of the number density at r from the 
mean number density: 

~n(r) == f fer, v) dv - L-3 f fLS fer, v) dr tiv, 

and the average is 

I~nl == L-3 r l~n(r)1 dr. JLs 

We could have chosen the root-mean-square value 
of ~n as the quantity to be fixed in (2.1 b). The present 
form of the problem, however, proves to be more 
amenable to analytic treatment. For density distri­
butions that are not sharply peaked, the values of 
these two quantities, the mean I~nl and the root mean 
square of ~n, do not differ greatly from each other. 

The other constraint (2.la) sets <1>( IX) equal to a 

given function of IX. The latter is designated as <l>o(lX) 
and is chosen to be the <1>( IX) of a uniform unperturbed 
Maxwellian of temperature T and density n: 

fo(v) = (21TkT/m)-ine- m O'/2kT. 

It is straightforward to find that 

<l>o(lX) = trrV(2kT/m)~{ -log [(IX/n)(21TkT/m)~])~. 

(2.2) 

Thus Tand n, together with I~nl, form a set of constant 
parameters for the problem. The minimum & that we 
are seeking should be a function of these parameters. 

A. Reduction of the Problem 

It is difficult to solve the above problem directly. 
With the introduction of another constraint, however, 
we can reduce it to a form for which exact solutions 
become possible. This extraneous constraint, which is 
not wanted, can be removed at an appropriate time. 
(See the last section of this paper.) 

Consider two point sets in r space, in which 
~n(r) is negative and nonnegative, respectively; i.e., 

I. 

II. 

{r: ~n(r) < O}, 

{r: ~n(r) ~ O}. 

The volumes of these sets are then functionals of 
fer, v) and will be denoted by '\}l and '\}2' Our new 
constraint takes the form 

'\}1/'\}2 = const = w. (2.3) 

In seeking fer, v) that minimizes & under constraints 
(2.2) and (2.3), we may consider only f of the form 

{

fl(V) for r in Set I, 
f(r, v) = (2.4) 

f2(V) for r in Set II, 

where fl(V) and f2(V) are monotonically decreasing 
functions of v (0 ::::;; v < (0). The reason is as follows: 
Given an arbitrary fer, v), the two sets in r space, I 
and II, are defined accordingly. Now consider two 
domains in r, v phase space in which rEI, r Ell, 
respectively. In accordance with Gardner's observa­
tion,4 one can distort fer, v) in each of the domains 
to the formsfl(v) andf2(v), respectively, in such a way 
that their respective r/> measures remain the same while 
their & values become less than or equal to the original 
values. In the mean time, the distortion also leaves 
'\}1/'\}2 unchanged, since the total number of particles 
in each set remains the same and the density at any 
point r in Set I remains lower than that in Set II. 
Thus, we conclude'that, for any givenf(r, v), we can 
always find anf of the form (2.4) which has a smaller 
or equal value of total energy & while sharing the same 
<I>(IX) and 9.]1/9.]2 with the originalf(r, v). 
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We note further that fl(v) and f2(v) are not inde­
pendent of each other; and both can be derived from 
an appropriately chosen single function. Consider the 
measures in the velocity space of sets {v:fl(v) > oc} and 
{v:f2(v) > oc}. These can be expressed as CPo(oc) - cp(oc) 
and CPo(oc) + wcp(oc), respectively, where CPo(oc) == 
L-3<I>o(oc). In these forms <I>(oc) is always <I>o(oc) for 
arbitrary cp(oc) , as is required by our constraints. 
Since It (v ),J.l v) are monotonically decreasing functions 
of OC,f1 (or f2) is equal to oc on the surface of a sphere, 
in v space, of volume CPo(oc) - cp(oc) [or CPo(oc) + 
wcp(oc)] centered at the origin v = O. The total kinetic 
energy can now be readily expressed in terms of cp(oc): 

E = _2-t(1)f~ f{W(CPo _ cp)f(cp~ - cp') 
1T 1 + w 

+ (CPo + wcp)f( cp~ + wcp')}oc doc, (2.5) 

where E == L-3&, the average energy per unit volume 
in L3. The unknown function cp(oc) is to be varied to 
attain minimization of E. Since CPo - cp and CPo + wcp 
are, by their nature, nondecreasing functions of oc, 
just as <I>(oc) is, cp(oc) is subject to the bounds 

- .! cp~(oc) ~ cp'(oc) ~ cpMoc). (2.6a) 
w 

By definition, the density in I is smaller than that in II, 
and we must have 

f cp'( oc)oc doc < o. 

I~nl can be found as 

I~nl = -2w fCPI(OC)OC doc. 
l+w 

Constraint (2.1b) now takes the form 

f cp'(oc)oc doc = const < o. (2.6b) 

With suitable changes of variables, the preceding 
problem may be recast into a form which proves to be 
more convenient. Introducing 

x == -log [(oc/n)(21TkT/m)i] 
and 

:F == -(oc2/n)cp'(oc), 
(2.5) becomes 

E = fnkT'¥, 

8 1Tl 100 

i i '¥ == - e-"'[ul(x) + u2(x)]' dx, 
15 (1 + w) 0 

{

U2(X) == [xi + Wi1Tt l'" ell:F(y) dY]*, 

uI(x) == [x! - 171'1l'" ell:F(y) dy r. (2.7) 

r~~~1~~~41'========~rr~==========;x 
\ I 

\ , , , 
', ...... 

" -'-
..... --

FIG. 1. :F(x) and its bounds; the figure shows (I) "constrained 
interval" and (II) "free intervals" solid line represents :F(x); broken 
lines represent the upper and lower bounds ±2/1Tt e-z",t. 

Primes indicate differentiation with respect 
Equations (2.6a) and (2.6b) become 

{

- .! 1. xte-'" ~ :F(x) ~ ~ xte-"', 
w 1Tl 1Tl 

fooo:F(X) dx = const = c > O. 

to x. 

(2.8a) 

(2.8b) 

The problem now reduces to this: Find the :F(x) 
which minimizes '¥ of (2.7), subject to the conditions 
(2.8). 

3. EXACT SOLUTIONS 

The preceding problem would be solvable in a 
straightforward manner by the usual Euler-Lagrange 
methods except for the bound (2.8a) imposed on the 
solution. :F(x) may coincide with the bounds in some 
interval, say, Xl < X < x 2 • Xl - X2 will be referred 
to as the "constrained interval," and the remaining 
range, the "free interval." (See Fig. 1.) 
We wish to find an :F(x) which satisfies these criteria: 
(1) !5'¥ = 0 and !52'¥ > 0 when the variation !5:F(x) is 
confined to within the free interval; (2) !5'¥ > 0 
when the variation involves moving :F(x) inward and 
away from the boundary in the constrained interval. 
For this purpose it is convenient to consider an 
elemental form of !5:F(x): 

!5(x) = !5s[d:F(x - b) - d(x - a)], (3.1) 

which is consistent with the constraint (2.8b). Herein d 
denotes the delta function, while !5 is reserved for the 
variation. A general !5:F(x) can be built up from 
superposition of (3.1) of different a and b. Equation 
(3.1) signifies a transport of quantity !5s from X = a 
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to x = b. The criteria for (3.1) become: 

(1) (j'Y = O) when both a and b lie in 
(2) b2'Y > 0 the free interval, 

(3) (j'Y > 0 when a lies in the constrained 
interval and b lies in the free 
interval. (3.2) 

When (1) is assumed to be valid for arbitrary a and b 
within a certain interval X2-Xa, it leads directly to a 
first integral 

U2(X) - ul(x) = const = k. (3.3) 

It can be readily verified that the use of Lagrange 
multipliers lead to an identical result. Equation (3.3) 
governs .r(x) in the free interval. It will be convenient 
for later purposes to introduce a new variable 

'Y} == 17Ti x-i 50" e"'.r(x') dx' 

from which .r(x) may be recovered: 

:F(x) = :i e-ltxi ( 'Y}(x) + tx ~~). 
Equation (3.3) now takes the form 

[(1 + W1J)f - (1 - 'Y})f]x = const = k. (3.4) 

For any positive k, 'Y} decreases monotonically. The 
corresponding .r(x) reaches the boundary at 2-fk and 
remains between the bounds from 2-!k to 00. Thus 
Eq. (3.4) is acceptable as a solution in this range of x, 
provided that a suitable solution can be found outside 
of this range, namely 0-2-fk. It turns out that the 
only admissable one is 'Y}(x) = 1 identically. Any other 
'Y}(x) can be shown to violate either the bounds of 
(2.8a) or fail to match the value of Eq. (3.4) at 2-fk. 
Thus we obtain the solution in the whole range of x: 

{
'Y} = 1, (0::; x ::; 2-i k); 

[(1 + w'Y})f - (1 - 'Y})i]x = k (Z-!k < x < 00). 

(3.5) 

The first part of Eq. (3.5) yields .r(x) lying on the 
boundary. Then 0 - 2-f k is what we call the con­
strained interval, and 2-fk - 00 is called the free 
interval. 

Now it remains to test tne other two conditions (2) 
and (3) in (3.2). For condition (2), we obtain the 
second variation by treating the delta functions in 
(3.1) as appropriate step functions. Upon taking 
suitable limits, we obtain 

b2'Y 
(jS2 = N(a, a) + N(b, b) - ZN(a, b), 

(2-i k < a < b < 00), 

where 

* N(a, b) == 7T W ea[ul*(a) + wU2*(b)] 
3(1 + w) 

27Ti W roo .1 .1 - 3 (1 + W) e
aH 

Ja e-
lt
[wU2"2"(X) + Ul"B"(x)]' dx. 

(3.6) 

In accordance with Eq. (3.4), it can be shown that 
both Ul(X) and u2(x) are positive-deJinite and monoton­
ically increasing functions of x in the range 2-fk < 
x < 00. The integrand in (3.6) is therefore negative. 
These lead to the following inequalities: 

(1) ea[ul(a)-i + wU2(a)-i-] > ea[ul(b)-i 

+ wu2(b)-i] > eIJ[ul(b)-i- + wu2(b)-i-]; (3.7) 

(2) zeaHfo ... dx > (e2a + e2b) Loo ... dx 

> e2a Loo ... dx + e2bLoo ... dx, (3.8) 

where S· .. dx stands for the integral in Eq. (3.6). 
With these relations, b2'Yj(jS2 of Eq. (3.6) becomes 
positive-definite: (j2'Yj(jS2 > 0 (for a and b both in the 
interval: Z-ik - 00). 

To test condition (3) of Eq. (3.Z), a and b are now 
placed in the intervals 0 < a < 2-fk < b < 00. We 
obtain b'Y / bs in terms of Ul and "2: 

where 

b'Y 
- = M(a) - M(b), 
bs 

Zw 
M(a) == [u2(a) - ul(a)] 

3(1 + w) 

_ Zeaw roo [u~(x) _ u~(x)]e-lt dx. 
3(1 + w) Ja 

Evaluating the above in accordance with (3.5), we 
obtain 

b'Y = tw(1 + w)-l[(Z-fk - a) 
bs 

+ exp (-Z-fk + a) - 1]. 

Since 2-fk - a > 0, we may use the inequality 

h + e-" - 1 > 0 (for h > 0). 

Thus we have 

tJ'Yjbs > 0 (for a, b in the ranges 

o < a < 2-i k < b < 00). 

We therefore conclude that (3.5) is the minimum 
solution we are seeking. 
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4. APPROXIMATE EXPRESSION FOR 
THE BOUND 

On the basis of the preceding analysis, we may 
proceed to calculate the minimum E as a function of 
n, T, and Idnl. It will be useful to find an expression 
in terms of these three parameters. The original 
objective of this paper was to exhibit an additional 
energy requirement for a state of density fluctuation 
in comparison with the uniform state. 

In accordance with the solution (3.5), the minimum 
'f" and Idnl may be equated to the following quadra­
tures: 

i 2-f k 
m 4(1 + w) f i -<I'd 
T= ~ xe x 

37r2" 0 

8(1 + W)fl -k + exp 2. ~ 
9'7T! 0 p~ - Q~ 

. [p-I + Q-I][pi _ Qi]-t[pi + wQIrl d1], 

(4.1) 

I~I 4wn J2
-
ik 

t -<I' d un = x e x 
7rt(1 + w) 0 

+ 8wnki f1exp -k . [pI _ Ql] 
3'7Tt(1 + w) Jo pi _ Qf 

. [p-l + Q-I][pf - Qf]-![pi + wQl]-l d1), 

where {~:!: ;.1], (4.2) 

Thus 'f" and Idnl/n depend only on wand k. These 
integrals have been computed electronically for 
different sets of values of wand k (see Table I). For a 
given fixed w, different k yield different pairs of 'f" 

and Idnl/n. A connection between 'f" and Idnl/n is 
thereby established. We denote this dependence by 

The minimum E is then equal to 

tnkT'f" W' 

according to Eq. (2.7). As yet, there is a dependence 
on w due to the additional constraint introduced early 
in Sec. 2, namely <tJ1/<tJ2 = w. To return to solving 
the original problem of minimizing E without this 
extraneous constraint, we can seek w that minimizes 

'f" w(l~nl/n) for each value of I~nl/n. It turns out that 
this lies in the range 1-1.4. Within this range, 
'f" w(l~nl/n) is only slightly dependent on w, differing 

TABLE I. Samples of actual computed 
values of 'F .,,(IK!iT/n) and their percent 
differences from the approximate formula 
'F = 1 + 0.4([fui[/n)2, taken from exten-

sive data of electronic computations. 

w 

1.0 
1.0 
1.0 
1.0 
1.0 
1.2 
1.2 
1.2 
1.4 
1.4 
1.4 

1.0108 
1.0337 
1.1384 
1.2382 
1.3429 
1.0231 
1.1764 
1.2866 
1.0229 
1.1976 
1.3102 

0.1542 
0.2886 
0.5877 
0.7416 
0.8543 
0.2271 
0.6477 
0.8129 
0.2239 
0.6965 
0.8486 

% difference 
from formula 

0.1 
0.1 
0.1 
1.4 
2.8 
0.3 
0.8 
1.8 
0.3 
0.3 
0.9 

by a few percent. Thus, for the absolute minimum, 
we have 

Based on our numerical results, 'f" w(ldnl/n) is expressed 
in the form of a power series. It turns out to be 

'f"w(ldnl)1 R> 1 + 0.4(l
dn

l)2. (4.3) 
n w=l n 

We have adjusted the constants in the definition of'f" 
so that it normalizes to 1 for dn = O. The vanishing 
of the linear term in Eq. (4.3) is attributable to the 
stationarity of 'f" WIW=l at dn = O. The contribution 
from the third- and higher-order terms is less than 3 or 

4 % of the second term, for Idnl/n as large as two­
thirds. Equation (4.3) therefore omits these higher 
terms. The minimum E becomes, to a good approxima-
tion, 

3 [ (Idn l )2J Emin '" "2nkT 1 + 0.4 -n- . (4.4) 

Equation (4.4) gives the lower bound on the average 
kinetic energy per unit volume for a plasma of mean 
number density n, temperature T, and average density 

deviation I~nl. 
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The problem of analytic continuation of the many-body scattering amplitude associated with a 
perturbation-theory diagram under the rotation of the final momenta from real to complex momenta, 
k -.. (1 + iO)k, is studied. It is shown that the contour of integration over internal momenta can be 
distorted avoiding singularities of the integrand, as 0 varies for small enough O. If the diagram is 
connected enough, the potentials are Yukawa-type, Re E > 0, and 1m E < O. The rotation angle can be 
picked independently of 1m E. 

I. INTRODUCTION 

WE intend to study the analytic continuation in () 
of a many-body scattering diagram, where the 

final momenta, all initially real, are rotated under the 
transformation k ->- (1 + W)k. A more general type 
of continuation will also be studied. We restrict our 
attention to Re E > 0, 1m E < 0, the most interesting 
situation. The heart of the study is an analysis of a 
peculiar geometrical problem. The type of geometrical 
analysis involved clearly can be applied to more 
general problems than those studied here, about which 
a few comments will be made later. 

n. SCATTERING DIAGRAM 

We deal with an N-particle scattering situation. 
There will then be N masses, M I , M 2 ,"', M N , 

and a Hamiltonian 

k2 

H = '2, -' + '2, ~llxi - Xi\)' 
i 2M; i<i 

(1) 

Clearly we limit ourselves to two-body interactions. 
We change momentum variables so that Ho can be 
written 

(2) 

and there is then the equation of momentum conserva­
tion 

'2, k;Mr = const. (3) 
i 

Now consider a perturbation-theory diagram 
specified by a sequence of interactions and internal 
momenta (before integration). We write the momen­
tum of each state as a vector in 3N-dimensional 
Euclidean space (kl' k2' ... , kN)' By working in the 
center-of-mass system, one can take 

(4) 

If there are S intermediate states in the diagram, there 

is then the following sequence of (S + 2) vectors: 

(kill kill ... kill) 
I, 2' , N 

(k~ , k;, . . . , kN) 

(k fill kfill . .. kfill) 
I , 2, 'N' (5) 

For each of the vectors, Eq. (4) holds. If the interaction 
between the ith intermediate state and the (i + I )th 
intermediate state is V LT, the vector difference in 
3N-dimensional space 

(ki+I, ... ,kW) - (kl, ... ,k~) 

is parallel to the vector 

(0 0 ... 0 Mf a 0 '" 0 .. , Mfa 0 '" 0) )' "T" " ,- L" , 
(Lth place) (Tth place) 

for some three-dimensional vector a. We prefer to 
think of this difference as the appropriate succession 
of three displacements in the directions 

(0 0 . " Mf i 0 ... 0 _Mf i 0 ... 0) 
" , T" " L', " 

(0,0, ... , M~j, 0, ... ,0, -Mt, 0, ... ,0), (6) 

(0,0,"', Mtk, 0,' ",0, -M!k, 0,' ",0). 

Thus we have a 3(N - I)-dimensional vector space 
(the subspace of pN with ! Mtki = 0), and a 
sequence of 4 + 3S vectors in this space (breaking the 
momentum transfer at each interaction into a sequence 
of three momentum transfers, as indicated above). 
In the sequence, two successive vectors differ by a 
vector parallel to one of the 3 [N(N - 1)/2] possible 
directions (three directions are associated to every 
interaction). These 3 [N(N - 1)/2] directions will be 
called preferred directions. 

The integration over internal momenta is an 
integration over all possible sequences of 3S + 2 

2415 
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vectors consistent with the direction restrictions 
associated with the interactions. 

We define, in the usual sense, the connectivity 
properties of the perturbation diagram. The diagram 
is M-connected if the sequence of 3S + 3 vectors 
can be partitioned into M subsequences, and at most 
M subsequences, such that the vectors in each 
subsequence are a spanning set. (The sequence of 
3S + 3 vectors is the sequence of preferred directions 
associated with the diagram.) This is equivalent to 
being able to subdivide the diagram into a sequence of 
M diagrams, and at most M diagrams, such that each 
subdiagram is connected. 

As we will be concerned with analytic continuation, 
we will allow the momenta to become complex. We 
restrict our attention to distortions of the original real 
contour that project one-to-one onto the original 
contour under the projection that sends each complex 
momentum onto its real part. Call these semiflat 
contours. Such a contour is specified by associating 
with each sequence of 3S + 2 real vectors in the 
3(N - I)-dimensional space, subject to the conditions 
that successive vector differences are parallel to the 
appropriate preferred directions, a second sequence of 
3S + 2 vectors (the imaginary parts of the momenta), 
with the same conditions on successive vector 
differences. 

The contour of integration may be distorted in any 
bounded region provided the integrand is analytic 
through the region of distortion. We will also allow 
distortions of the contour at infinity, a procedure that 
must be studied separately. The analyticity of the 
integrand involves the analyticity of the potentials 
and the analyticity of the energy denominators. For 
the first result we aim at below, we require the 
analyticity properties of the potential in momentum 
space to be that of a superposition of Yukawa 
potentials with a minimum mass greater than zero. 
We will also give a similar result for the case of 
momentum-space analyticity of the potentials in a strip 
about the real momentum axis as is obtained if, in 
coordinate space, 

W(X) I < ce-«I"'I, oc > 0 (7) 

for some c and oc. The essential difficulties and interest 
arise from consideration of analyticity properties of 
the energy denominators. 

The two results we obtain are among many that 
are obtainable by a similar procedure. In the conclusion 
we will indicate further directions. The type of 
theorems we now aim at are chosen through a con­
sideration of those that seem most useful in the study 
of many-body scattering theory along the lines of 

Faddeev's study of the three-body system. 1 The type 
of rotation of the momentum we consider in the 
theorems below, applied in a more general context, 
(outside of perturbation theory) could (hopefully) 
provide a method for dealing with the singular limit 
of the energy approaching the real axis. 

m. GEOMETRICAL THEOREMS 

We consider the following basic situation, motivated 
as an abstraction of the considerations of the last 
section. There is a Euclidean space E and a finite set 
P of unit vectors in E (specifying preferred directions) 
that together span E. 

Lemma 1: There is a constant c such that if any 
vector v in E is expressed as a linear combination of 
linearly independent vectors, ai' a2,"', all from 
P, each of the expansion coefficients is less than 
c Ivl. 

Proof' Writing 

we take the inner product of v with each of the unit 
vectors ai' . . . , all: 

ai·v = Iockai • ak, i = 1,2, ... , g. 
k 

This set of equations has a unique solution for the 
ak, since the matrix of inner products (a.· ak) is 
nonsingular. Because the value of the determinants 
of all such matrices formed from linearly independent 
subsets of P, being finite in number, is bounded 
away from zero, the lemma follows. 

Lemma 2: Let u be an arbitrary unit vector in E, 
and let ai' a2, ... , ag be any subset of vectors from 
P. Let 

f.l = max (Iu' ail), 
i=l.··· ,g 

and let () be the angle between u and the subspace 
spanned by ai' ... , ag (i.e., the smallest angle possible 
between u and a vector in the subspace). Then 

with c the constant of Lemma 1. 

Proof' This follows immediately from Lemma 1 
upon writing any vector in the subspace as a combina­
tion of the ak • 

1 L. D. Faddeev, "Mathematical Problems of the Quantum 
Theory of Scattering for a Three Particle System," AERE-Trans 
1002, United Kingdom Atomic Energy Authority Translation. 
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Lemma 2': There is a minimum angle between the 
subspaces spanned by any subset of P and any vector 
from P not in the subspace. 

Proof' This follows since there are only a nnite 
number of such pairs of subs paces and vectors not in 
the subspace formable from P. 

Mam Theorem: Let (aex(I) , 8ex(2) , ••• ,aex(u}) be a 
sequence of vectors from the set P, possibly with 
repetitions. The connectivity of this sequence is 
defined as before as the greatest number of sub· 
sequences the sequence can be partitioned into: 

(aex(1) , a ex (2) , ••• ; aex[p(l)})(aex[tl(I)+l)' ... ) ... 

(8ex[P(M-l)+1)' •.. ,80«11»' (8) 

such that each subsequence contains a spanning 
subset. Let (Xl' X2 , •• " xg+1) be a sequence of vectors 
from E with the property that XH1 - Xt is parallel 
to 8exW' Let a be a fixed number greater than zero. 
There is a (j > 0 and an Mo such that, for every two 
sequences related as the above, there is a sequence 
(YI' Y2"" 'Yu+1) of vectors with 

(a) Y~+1 - Y. parallel to aexw I 

(b) Yl = 0, 

Yu+l = xg+l> 

(c) Yi' X. ;:: 0 if a - (J S IXil S a + (j, 
provided the connectivity of the a sequence is greater 
than Mo. 

It is easy to show that, in general, the theorem 
would not be true if instead of (c) above we tried 

(c') Y.· Xi ;:: 0 if Ix.1 S a. 
However, it does not seem difficult to modify the 
proof to include the stronger theorem obtained 
with (c) replaced by 

(c") Yi' Xi ;:: 0 if 0 < b S IXil S a, 
a and b given, limited only by 0 < b S a. This 
generalization, important for some further applica­
tions, is not explored here. 

Lemma 3: If Ix. - Yil < a - (J, the inner product 
condition (c) is automatically satisfied. 

Proof' This is immediate. 

Lemma 4: If Xl' Xl' .•.• Xp!l) all lie outside the 
shell a - (j s Ixi S a + (j [(aex(1),···. aex[PU)]) a 
spanning set as indicated in the statement of the 
theorem], then Y. can be chosen equal to Xi for i = 
PI + 1, PI + 2,' . '.g and Yl"", Yilm can be 
chosen so that this set of Yi satisfies conditions of the 
theorem. 

Proof" Expand X/Hl)+1 in terms of a1 •••• , aex[p(llJ' 

xp(l)+1 = Otl81 + ... + Otp(l)aex{p{J)]' 
Pick 

Yl = 0, Y2 = Otlal , Y3 = Otlal + Ot2a2' 

Y pm+! = Xp(l)+1' 
These choices satisfy the necessary conditions. 

Lemma 5: There is an e such that, if lx, - Yil < e 
for some i and if aextil , ... , aexlf } form a spanning set, 
then Y.-H can be chosen equal to XH1 and intermediate 
y's can be found consistent with the conditions of 
the theorem. 

Proof: Pick a linearly independent set of spanning 
vectors among 8exW •••• , aex(a)' Now expand 

.. Xi - Yi = Ot.aexli) + ... + Ot88ex(8) (9) 

with coefficients different from zero only among the 
linearly independent spanning vectors. Pick 

YHI = Y. + Ottaex{i} + (x.+1 - Xi), 

YH2 = YH1 + Ot'+1a"'(H1) + (XiH - XHI), (10) 

Ys+1 = XS+1 • 

It follows that 

Y.+1 - Xi+1 = (Y. - Xt) + Ot.8ex(i), 

Y.+2 - XiH = (y. - Xt) + Ot,aex(i) + Ot.+1aO«/+1)' 

Thus 

(11) 

ly<+1' - xHrl sly, - xii + ~ IOttl. (12) 

Since IOt.1 < c lx, - Y.I by Lemma 1, if D is the 
dimension of the space, 

IYHI' - xHrl S (1 + Dc) Iy. - xii, 

r=O,l,···. (13) 

If Iy. - Xtl is small enough, then IYHI' - xH .. 1 < 
a - (j, which, by Lemma 3, guarantees that these 
y's work. 

Lemma 6: If lx, - Yil < a - (j for some i, then a 
sequence of y's can be found starting with Yi which 
satisfy the conditions of the theorem such that 
IXle - Ylel is monotonically decreasing; and each time 
the a's pass through a spanning sequence, the IXlc - Y .. I 
decreases at least by some factor r, r < 1. r depends 
only on the vectors in P. 

Proof' Pick y's successively by minimizing Ix,. - y,.1 at 
each stage; that is, Y7<+1 - y,. = A~ex(le) with Ale chosen 
to minimize IX7<+1 - Y7<+II. It is clear that Ixlc - hi < 
a - (J for all k, so the conditions of the theorem are 
satisfied. It remains to see that /Xk - Ykl decreases by 
some factor as the a's go through a spanning set. We 
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omit the proof of this fact; it may be constructed 
along the lines of the following lemma. 

Lemma 7: If a - b S IXll S a + b (with Yl = 0), 
an allowable sequence of y's can be found such that 
Ix.+1 - Ys+ll < a - b, provided al ,···, as are a 
spanning set (from P) and b is small enough. b may 
be chosen, depending on a and the set P, but in­
dependently of the x's. 

The main geometric theorem follows from Lemmas 
3-7. If x never hits the spherical shell as the a's pass 
through the first spanning set, Lemma 4 shows the 
existence of the y's. If some x hits the spherical shell as 
the a's pass through the first spanning set, use Lemma 
7 to obtain Ix; - Y;I < a = b. Then use Lemma 6 to 
get IXk - Ykl small enough to use Lemma 5, complet­
ing the sequence of y's. 

Proof of Lemma 7: Let D be the dimension of the 
Euclidean space, 0min be the angle of Lemma 2', and 
c be the constant of Lemma 1. Choose 01 , O2 , ••• , 

o D-l such that 
81 = CP1 > 0, 

0H1 - 2 sin-l (Dc sin 0i) = CPi+l > 0, (14) 

Omin - 2 sin-l (Dc sin 0D-l) = CPD > 0. 

Let CPmin = min (CPl' CP2' ..• , cP D); pick b such that 
(a + b) cos CPmin < a-b. By assumption, a - b S 
IXll S a + b. Let aI' az, ••• , aR be a spanning set, 
but. aI, a2, ... , aR-l not. Let bl = aI' bi = ap(i) , bi 

the first of thea/s linearly independent of bl , b2, ... , 
bi-l. bD will equal aR. Let "Pi = 1T/2 - L(bi , Xl). 
By L (bi , Xl) we mean the angle between the vectors 
bi and Xl (minus their orientation), an angle between ° and 1T/2. Let "Pk be the first of the "P's with "Pk ;;:: CPk. 
Then "Pl < CPl' "P2 < CP2' .•• , "Pk-l < CPk-l' and "Pk ;;:: 
CPk. Such a k must exist due to the nature of the cp's. 
If IX,B(kd sa + b, let 

Yl = Y2 = ... = Y,B(kl = 0, Y,B(kl+1 = Able' 

A chosen to minimize IX,B(kl+1 - YP(kl+1l. If IXp(kll > 
a + b, with 

IXgl S a + b, IXg+11 > a + b, 

IXg+21 > a + b, ... , IXp(kll > a + b, 

then pick 
Y, = Y2 = ... = Y 9 = 0, 

Yg+l = xg+l - Xg, 

Y P(k) = Xp(k) - X g , 

YP(kl+1 = )'bk + Y,BCk)' 

A chosen to mInimiZe IXPCkl+1 - Yp(kl+1l. One can 
check that IYPCk)+1 - XpCkl+11 < a - b in both cases. 

IV. ANALYTIC CONTINUATION 

Theorem 1: If E = a2 - ie, a> 0, E > 0, and if all 
the potentials involved have the analyticity of a 
superposition of Yukawa potentials with a minimum 
mass greater than zero, then there is an Mo and an 'YJ 

such that any perturbation-theory diagram with 
connectivity ;;::Mo considered a function of 0, kiln ~ 
(1 + iO)klln[kin and kiln being real] has the property 
that the intermediate-state integration contour can be 
distorted through analytic regions of the integrand as 
o varies from 0 = ° to 0 = 'YJ. 'YJ will depend on: 

(a) N, (b) M l , M 2 , ••• ,MN , (c) the minimal mass 
in the Yukawa decomposition of the potentials, 
(d) a, (e) kin, but not on kiln. 

It is important to notice that the requirement of 
high connectivity is essential. For example, with 
N = 3, the simple second-order diagram with 
interactions V12 followed by V2S cannot be continued 
as above. With kin and kiln specified in this case, the 
possible rotation angle may approach zero as E -+ 0. 
The existence of the rotation in the limit E -+ ° is 
most crucial. 

It is reasonable to suppose that by increasing the 
connectivity requirements the amount of rotation can 
be increased beyond that allowed by the theorem. 
This is an interesting question, but possibly not 
important to the proposed application of the theorem. 

To prove Theorem 1, we observe that the following 
bounds can be put on IYil and IYi+l - Yil by examining 
the construction of Lemmas 3-7: 

IYil SCI IXll + c2lxil, 

IYHl - Yil S cslxi+l - Xii + c4 lxll. (15) 

We identify the a of the theorem and the a of the 
geometric construction, and associate the x's with the 
real parts of the momenta, the y's with a constant 
A times the imaginary part of the momenta. It is easy 
to see that, with a fixed a, fixed initial momenta, and 
minimum mass of the Yukawa potentials, if A is large 
enough (A ;;:: Ao, say), the real and imaginary parts form 
a complex momentum always avoiding the singularities 
of the potentials and the energy denominators. The 
inner product condition of the geometric construction 
guarantees that the denominators are never singular. 
If 1m E is fixed at some negative value, then the 
sequences of y's satisfying the conditions of the 
geometric theorem form a convex set under vector-by­
vector addition. We can impose (15) and still maintain 
a convex set of solutions. Since 1m E < 0, we can 
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replace the inner product inequality Xi· Yi ~ 0 by 
Xi· Yi > -e, e> ° for some small E, a condition 
that also possesses a convex solution set. We observe 
the following lemma. 

Contour Construction Lemma: Let ER +s be Euclid­
ean (R + S)-dimensional space considered as a product 
of ER and E S , with 7T the projection onto ER. Let 
U be an open set in ER+S with the following two 
properties: 

(a) U projects, under 7T, onto all of ER; 
(b) The inverse image of each point under the map 

7T: u -'>- ER is a convex subset of E S• 

Then there exists a differentiable (even COO) cross 
section, i.e., there is a differentiable map F: ER -'>- U 
such that 7TF: ER -'>- ER is the identity map. 

Proof: Pick a point [x, lex)] in U for each point x 
in ER. Each such [x, lex)] is contained in a product 
neighborhood ul(x) X u2(x) C u. In the neighborhood 
Ul(X) of x in E R, the map Ix:Y -'>- [Y, leX)] is a COO 
cross section. There is a locally finite refinement V. 
of the ul(x) and a subordinate Coo partition of unity 
r/>a' The convexity of the fibers allows this Coo 
partition of unity to provide a global cross section: 

f = L cPafx(a) , 
a 

where Va C U1[X(Cl)]. 
This lemma enables us to construct a global contour 

of integration. (1/,10) is the 'Y] of the theorem. For ° ~ 0 ~ 'Y], the contour of integration may be chosen 
to be the momentum surface associated with A = I/O. 
(The lemma is applied with ER the space of X se­
quences and E S the space of Y sequences.) 

If the potentials have analyticity in a strip about 
real momentum values, and not in the full Yukawa 
region, the above construction must be modified to 
bound lyJ We restrict ourselves to the following result. 

Theorem 2: Let kin, Rlln , and Illn be real vectors, 
with Rlln and Illn satisfying the following conditions: 

(a) IIllnl < 1; 
(b) If ko is any vector in the shell (a - (j ~ 

Ikol ~ a + (5) and Rlln - ko = LiEJ Clia i for 
some subset indexed by J of vectors from P, 
then Illn - ko = LiEJ f3iai for some f3i' 

Then, given any B > 0, there is a ,10 such that the 
amplitude can be continued in the final momenta 
written as kiln = Rlln + iAIlln from A = 0 to A = ,10' 
and 11m kil < B for all intermediate stresses. ,10 
will depend on: (a) M l , M 2 ,'" , M N , (b) N, (c) B, 
(d) Re E. 

Proof: Let Q be a sphere of radius greater than the 
maximum of a + 15 and 1, in the setup of the geo­
metric theorem before. As before, solve the geometric 
problem for Xl = kin and xlln = Rlln . By Lemma 2 
there is a sphere Q' greater than Q such that if any 
subsequence of vectors in the solution set begin with a 
vector in Q and end with a vector in Q, the solution 
set can be modified to keep all vectors inside Q'. 
With such modifications this theorem follows from 
Theorem 1. 

V. CONCLUSION 

We indicate problems remaining to be studied. 
First, the behavior at infinity must be studied suffi­
ciently to justify the contour distortion at infinity. 
Second, the equations for many-body scattering 
amplitudes should be continued similarly to the 
perturbation-theory case. The geometry of this 
problem seems treatable with only a slight generaliza­
tion of the theorems included here. If the analytic 
questions relating to threshhold behavior and behavior 
at infinity for the integral equations can be treated 
systematically, a rigorous treatment of the problem of 
asymptotic completeness may be achieved. 
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Daughter Regge Trajectory in a Field Theory Model 
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All contributions of ladder diawams in ,a Arp3 theory with unequal masses which are asymptotically 
o~ order t-' l~m t are summed to glv,e a family of secondary Regge trajectories. The analysis is carried out 
With the M~lh,n tra!1sformed scatter!ng amplitude. The daughter Regge trajectory predicted by Freedman 
and ~ang IS Iden~Ified: For equ~l Internal m~sses on .the sides of the ladder, the daughter pole has the 
follOWIng properties: (I) The trajectory functIOn oc(s) IS constant when calculated to lowest order in the 
coupl.ing constant; that i.s, the po!~ is fixed., (ii) The pole moves in higher order, but the trajectory 
functIOn has no two-particle cut. (111) The residue of the pole has no two-particle cut, and vanishes to 
all orders for equal external masses. The amplitude with unequal internal masses is considered in lowest 
order: and it is shown t~at three-part!cle scattering should continue to dominate the daughter trajectory 
fun~tlOn although th~re IS a two-pa,rtlcle cut. The daugh~er P?le moves towards the physical region less 
~apldly than the leadIng ~ole, and It develops a smaller ,ImagInary part at the two-particle threshold. It 
IS concluded that a detailed statement about the motion of the daughter pole requires an accurate 
treatment of three-particle scattering. As a by-product of this work an earlier error in a treatment of 
the mixing of Regge poles and cuts is corrected. 

1. INTRODUCTION 

DECENTLY Freedman and Wangl have shown 
~ that for unequal mass kinematics the require­
ments of analyticity of the scattering amplitude in the 
energy and momentum-transfer variables sand t 

coupled with Regge pole dominance of the asymptotic 
behavior implies the existence of a whole new set of 
subsidiary Regge trajectories. For an s-channel Regge 
pole the positions and residues of the secondary poles, 
called daughter poles, are determined at s = 0 by 
the requirement that they exactly cancel the s = 0 
singularities of the leading pole. These singularities 
occur because the momentum p2 becomes infinite at 
s = 0, rather than remaining finite as in the equal 
mass case. The residues of the daughter poles have 
corresponding singularities adjusted to cancel the 
leading pole singularity. If !X(O) is the position of the 
leading pole, the nth daughter pole has IX~(O) = 
!X(O) - n; and the singular portion of its reduced 
residue is proportional to s-n and vanishes, if n is odd, 
for coupling to equal mass particles. If pes) is the 
reduced residue of a Regge pole, then near s = 0 the 
reduced residue of the first daughter pole is given by! 

Pis) = -[(m~ - m~)2/4s](21X(O) + 1)PlO) + N.S., 

(1) 

where N.S. denotes nonsingular terms. The sub­
scripts d and I refer to the daughter and leading poles, 
respectively. The external masses in the s channel are 

• Work supported in part by the University of Wisconsin 
Research Committee with funds granted by the Wisconsin Alumni 
Research Foundation, and in part by the U.S, Atomic Energy 
Commission under contract A T(11-1)-881, #COO-881-1 05. 

1 D. Freedman and J. Wang, Phys. Rev. Letters 17, 569 (1966); 
Phys. Rev. 153, 1596 (1967). 

ml and m2. The nonsingular terms in (1) do not 
necessarily vanish for nil = m2' Durand2 has ex­
tended the analysis of Freeman and Wang to show 
that daughter poles are a more general phenomenon 
which should also occur in the scattering of particles 
with spin in order to cancel kinematical singularities 
from leading poles; the residues are again required 
to be singular. These general discussions of daughter 
poles provide no information about their behavior 
away from s = 0 or about the nonsingular portion 
of the residue. The physical importance of these poles 
depends to a great extent on their position as s becomes 
physical. 1. 2 If the daughters move more or less parallel 
to the leading pole, they should lead to a whole new 
set of physical particles or resonances with unusual 
quantum numbers.l On the other hand, some mech­
anism might act to prevent these poles from ever 
reaching the physical region. They might move more 
slowly with increasing s and never reach / = 0 or they 
might interact with other singularities and disappear 
from the physical sheet of the amplitude. Although 
the existence of these new poles was deduced on kine­
matical ground, the answers to questions about 
behavior away from s = 0 apparently involve dynamics. 

One approach to the problem involves solving the 
Bethe-Salpeter equation, usually in the ladder approx­
imation. If the well-known exact solutions to the 
bound state equations3 are reinterpreted in terms of 
Regge poles, it is possible to argue that the daughter 
poles move more or less parallel to the leading poles 
and reach physical values of the energy and angular 

2 L. Durand, III, Phys. Rev. Letters 18, 58 (1967). 
3 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954); J. S. Goldstein, 

ibid. 91, 1516 (1953). 
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momentum. However, some of the residues of these 
daughter poles have the wrong sign. Since this ap­
proach does not provide an analytic expression for 
the trajectory functions, there is some difficulty in 
determining why the ladder approximation should fail 
here. Recently, the Bethe-Salpeter equation has been 
solved numerically and the daughter poles followed 
away from their s = 0 position.' This work has shown 
that the daughter poles move somewhat more slowly 
than .the leading poles, but does not provide any 
further information. In particular it does not lead to 
an analytic expression for the trajectory function and 
it says nothing about the residues. 

In this paper we apply the techniques of high-energy 
perturbation theory to an infinite sum of ladder 
diagrams. 5 The justification for using perturbation 
theory as a laboratory for investigating questions of 
this kind has been given many times before. Regge 
poles, Regge cuts, asymptotic behavior of production 
amplitudes, and many other problems have been 
investigated by this technique, and it has been found 
to be quite useful and not misleading. The model 
considered here satisfies all the postulates necessary 
to prove the existence of daughter poles, contains a 
well-studied leading Regge pole, and leads to an 
analytic expression for the trajectory and residue 
functions of the first daughter pole. Having these 
analytic expressions, we are able to show that its 
residue vanishes to all order in the coupling constant, 
for all s, in the limit that m1 = m2' As a corollary 
to this result, the motion of the daughter poles is 
dominated by the effects of three-particle scattering. 
Since both this model and the ladder approximation 
Bethe-Salpeter equation treat three-particle inter­
mediate states very badly, any detailed statement 
about daughter-pole motion based on these models is 
unlikely to be correct. The main results of this paper 
have been published in a letter6 ; we now present the 
details of the calculation. 

Polkinghorne7 has studied ladder diagrams .and, 
by summing all terms of the form (In t)m/t, obtained 
the complete expression for a Regge pole which 
approaches I = -1 in the weak coupling or infinite s 
limits. That analysis was carried out for diagrams in 
which all masses, internal and external, were equal; 

, D. Freedman and J. Wright (private communication). 
5 For a complete discussion of the techniques and justification of 

high-energy perturbation theory, as well as an account of the various 
probl~ms to which it ~as been applied, see R. Eden, P. Landshotf, 
D. ~hv~, and J. Polkmghorne, The Analytic S-Matrix (Cambridge 
Umverslty Press, New York, 1966), Chap. 3. An extensive list of 
references is given there. 

sA. R. Swift, Phys. Rev. Letters 18, 813 (1967). 
7 J. C. Polkinghorne, J. Math. Phys. 5, 431 (1964). Our notation 

genera\1y fo\1ows this paper, which wi\l be referred to as I. 
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~IG. 1. A general. ladder diagram of type studied with the 
varIOUS masses carned by each line labeled. In addition the 
Feynman parameters Yi' Zi, Xi belonging to the diagram are shown. 

however, it is trivially extended to a ladder diagram 
of the type shown in Fig. 1. These ladder diagrams 
will not satisfy two-particle unitarity unless m~ = ft2 

and m~ = )12; however, the existence proof for the 
daughter poles is independent ofunitarity. In addition, 
the daughter pole is presumably a dynamical entity 
whose coupling to two particles depends on kinematics 
but whose motion is largely independent of this 
coupling. We have generalized the approach of 
Polkinghorne7 to sum all contributions of the ladder 
diagrams which are proportional asymptotically to 
(In t)mft 2 in order to obtain a set of Regge poles near 
1= -2. A lowest-order summation (in the coupling 
constant) has been performed previously in connec­
tion with Regge cutS.8 There is a minor error in this 
earlier analysis due to an improper ordering of limits; 
i~ addition, it was carried out for all masses equal. 
Smce the method of that paper could not easily be 
generalized to problems involving unequal masses, 
a completely different approach has been developed. 

Of the several techniques developed for extract­
ing the asymptotic behavior of Feynman integrals, 
the ~ost powerful has proved to be that utilizing the 
Mellm transform of the scattering amplitude.s The 
Mellin transform of the scattering amplitude is dis­
cussed fully in I and Ref. 5, and the relation between 
~ellinpoles and Regge poles is discussed thoroughly 
m II. As shown in these articles, the leading pole is 
obtained by summing all portions of the amplitude 
singular near IX = -1, where IX is the Mellin transform 
variable. Since every Mellin pole can be identified with 
a Regge pole,8 a Mellin trajectory is also a Regge 
trajectory. 

The secondary poles are obtained by summing 
terms singular near IX = - 2. The summation pro­
cedure for the secondary poles is considerably more 
complicated than that used near IX = -1, and much 

8 A. R. Swift, J. Math. Phys. 6, 1472 (1965). This paper wi\l be 
referred to as II. 
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of this paper is concerned with resolving this difficulty. 
The result is an amplitude that has four poles near 
IX = -2. One is a trivial recurrence of the leading pole, 
and one is the daughter pole. The other two are new 
dynamical poles which are present even in the equal 
mass problem. We concentrate on isolating and 
identifying the daughter pole. In the limit that the 
masses on the sides of the ladder are equal (fl = v), 
the daughter pole can be isolated completely and its 
residue determined. The trajectory and residue func­
tions have their first singularity at the three-particle 
threshold. To lowest order, the daughter trajectory is 
a constant for fl = Y. If fl =;tf Y, the situation is quite 
complicated. The formal solution to all orders does 
not factor; even in lowest order the daughter pole 
is one of three roots of a cubic equation. In general it 
is one of the zeros of a 4 X 4 determinant. However, 
we are able to show that to lowest order the daughter 
pole still does not move parallel to the leading pole. 

In the next section we discuss briefly the calculation 
of the leading Regge pole for a sum ofladder diagrams; 
we obtain the residue and trajectory function for the 
leading pole for comparison later with the daughter 
pole. The third section is devoted to a detailed treat­
ment of the complete summation of terms of the 
scattering amplitude singular near IX = - 2. In Sec. 4 
we set fl = Y and discuss the amplitude in lowest order 
and identify the daughter pole. Then we look at the 
complete amplitude and isolate the daughter trajec­
tory and its residue to all orders. Section 5 treats the 
case with unequal masses (fl =;tf Y) to lowest order to 
check the conclusions reached in Sec. 4. Appendix A 
contains a number of definitions and identities for 
various functions of the Feynman parameters that 
occur in Sec. 4. Appendices Band C present explicit 
expressions for some of the matrices and energy­
dependent functions used in Secs. 4 and 5. In Appendix 
D the work of II on the mixing of poles and cuts is 
corrected for the error mentioned above. 

2. THE LEADING REGGE POLE 

We start with the Mellin transform of the scattering 
amplitude for a ladder diagram with N + I rungs as 
given by Eq. (6) of!. 

The parameters Xi' Yi' Zi are labeled in Fig. 1. The 

function QN is linear in s and the various masses5 : 

- m~[(g~ + h~)/LlN] 
- m~[(gN + hN)fLlN] 

- sfN/LlN' (3) 

The determinant for the ladder LlN is well known,S 
and the other functions of the parameters occurring in 
(3) are given explicitly in Appendix A. Those portions 
of the scattering amplitude singular near IX = -1 
have been summed in 1. The full amplitude is given 
by the sum of LN(IX, s), N;;::: O. We repeat the pro­
cedure here briefly to emphasize the difficulties en­
countered near IX = -2. Equation (2) is integrated 
by parts over the Xi; the result is an integrand of the 
form 

(_l)N+1 n Xi - (1i(1i_1 + (1i(1i_1 
{

N+1 [aTl ( )a+1] ( )a+1} 

i=1 IX + 1 oc + 1 

X oX .~~+;X (:~:~, (4) 
1 N+1 UN

2
) 

where O'i = Yi + ,Zi' (10 = O'N+1 = 1. We have added 
and subtracted a term (O'iO'i_l)a+1 in the (N + I)-fold 
product. For this leading pole we could have added 
and subtracted (I)a+1 as was done in I, but for IX = -2 
several unpleasant divergences appear if this is done. 
The term [.xf+1 - (O'i(1i_1)a+lJ/(oc + 1) is regular at 
IX = -1. The product in (4) can be expanded to give 
a sum of 2NH terms. If «(1i(1i_l)a+1/(OC + 1) occurs 
in the sum, the corresponding Xi will be absent and 
the integral over Xi can be done immediately to give 

e-Qll
i' I e-QIi

- 1 e-QiN 

- (LlINy+2 ",,=0 = - (Ll
li

_
1
)a+2 X (LliN)il+2 . 

The double subscript notation used here is explained 
in the first paragraph of Appendix A. This simple 
factorization property allows the singular part of the 
amplitude to be summed readily. In LN(IX, s) there 
are terms with zero to N + I rungs contracted, and 
these are distributed all possible ways. [A diagram 
with the nth rung contracted5 has the corresponding 
Feynman parameter X n , set equal to zero in (2) 
rather than integrated over.] Let us define the functions 

(5) 
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and 

G(oc, s) = 1 + i (- g:)N {<Xl IT dYi dZi 
N=1 167T Jo i=1 

X II 1 1-1 1 dx; N [X
a
+1 - (a. a .)a+ IJ 

;=1 oc + 1 

X (a yx+1 aN [exp (-Q~N)J (6) 
N aXI ... aXN (3..;Ny+2 ' 

where QIN' 3..1N are the Feynman functions for a 
ladder diagram with both ends contracted and N - 1 
internal rungs; Q~N' 3..~N refer to a ladder with just 
one end contracted. If the sum over N of LN(OC, s) 
is interchanged with the sum over m, the number of 
contracted lines, it is easy to see that 

i LN(oc, s) = g2r( -oc)G
2
(oc, s) i [F(OC, S)J

m
-

1 

N~ oc+1 m~oc+1 

= g2r( -oc)G
2
(oc, s) , (7) 

oc + 1 - F(oc, s) 

where we have discarded a term that is nonsingular 
in the neighborhood of oc = -1. The leading Regge 
pole is given by the solution of 

oc + 1 = F(oc, s). (8) 

has the same solution for oc + 2 that (8) has for oc + 1. 
Equation (12) occurs in the fourth section and is 
associated with the Mellin recurrence of the leading 
Regge pole. From the formulas given in II we see that 
for every leading Regge pole there will occur a series 
of secondary Mellin poles, the first of which is given by 

1:(oc, s) = - 2OC I(S)YI(S)p2 
oc + 1 - ocl(s) 

Finally, we give the first-order solution of (8). 

2 

oc + 1 = -1L K(s) 
167T2 

(13) 

= - -- exp (-p, Y - v z) + _. . g2 i<Xl dy dz [ 2 2 Sxy] 
167T2 

0 a a 
(14) 

The trajectory function of the leading pole has its 
first singularity at the two-particle threshold. 

3. SUMMATION OF IX = -2 SINGULARITIES 

To sum those portions of LN(oc, s) singular near 
oc = -2, we integrate LN(OC, s) by parts twice, and 
replace (4) by 

The extra ~+1 factors in (5) do not change the solution 1 IT ([X~+2 - (CTi CTi _ 1y+2] + (CTi CTi_ 1)a+2) 
of (8) from that given in 1. The Mellin residue of (oc + l)N+l i=1 oc + 2 oc + 2 
the pole in (7) is given by 

g2r( -oc)G\oc, s) 
YI(S) = 1 _ (dJdoc)F(oc, s) , 

(9) 

where oc is given by the solution of (8). The Mellin 
residue is related to the Regge residue byB 

yes) = _ (2oc + l)[r( -ocW ~(s). 
4a27T cos 7TOCr( -2oc) 

(10) 

Since it is more convenient, we shall work with Mellin 
residues. 

Equations (6) and (8) constitute an equation for 
oc + l. If we define a function Y(oc, s) by 

(11) 
then a term-by-term analysis shows that 

IX + 2 = -(oc + 2)Y(oc, s) (12) 

a2
(N+1) (e- QN) 

X ::'X2 • •• ::'X2 ~H2' (15) 
U I U N+I N 

The product is expanded in the same manner as before 
and those terms not containing Xi are integrated 
immediately to give 

_ ~ (e-QNJ~a+2) ._ . 
::. N .0:.-0 
uXi 

(16) 

Unfortunately, (16) does not factor simply, and 
herein lies the great complication in summing LN(OC, s) 
near oc = - 2. Since we want to obtain equations 
similar to (5) and (6) valid to all orders in the coupling 
constant, the approach we shall use is totally different 
from that developed in II. In general we have to 
consider a series of derivatives with respect to 
Xi' Xi"" ,Xm , X k • We order the x's so that i < 
j < , ... , < m < k and then perform the differ­
entiations in the order i, k,j, ... ,m. The reason for 
this ordering will become apparent. Using the various 
functions and relations given in Appendix A, we find 
that (16) becomes 

() (e-
QN

) (e-
Qli

-
1
) (e-

QiN
) --- ---x--xM ::'x Aa+2 0- A«+:& A«+2 liN' 

U i UN "'i= uli-l uiN 
(17) 



                                                                                                                                    

2424 AR THUR SWIFT 

(18) 

The only function used in Eq. (18) and not defined in 
Appendix A is GiJ ; it is given by 

J 

Gii = IT X k , Gii- 1 = 1, Gii- 2 = O. (19) 
k=i 

The result is 

[pG(a)]1i-1Aab(PEbc)ii-1, ... , (PEd.)mk-1[PG(e)]kN· 

(24) 

The factorization of (24) allows the corresponding 
part of LN(a., s) to be summed quite easily. 

The second term in (21) can be written in the form 

[PG(a)]1i_1Aab[F(b)PF(c)]ik_1Aca[PG(d)]kN' (25) 

F(b)[F(c)] is a column (row) matrix closely related to 
G(b) and is defined and discussed in Appendix B 
following Eq. (B2); the 3, 6, 7 elements are identically 
zero. All further derivatives of (25) operate only on 
the (FPF) factor; FF is an 8 x 8 matrix formed from 
the outer product of F and F. Suppressing the matrix 
subscripts, we find that 

Equations (17) and (I8) are quite complicated, and ~o (FP F)ik-1 = (mk-lFjk-lFjk-l + Fij-1Fii-1E~k-1 
further derivatives will be even more complicated.. uX i 

Hence, we introduce a matrix notation and write F F F HF )P P (26) + ;;-1 ik-1 ;j-1 ik-1 ;;-1 ik-I' 

(20) where we have used 

The elements of the 8 x 8 matrix Aab depend on s, 
the various external masses 22 and a. + 2. The 
column (row) matrix GiN(b)(Gli_ 1 (a» is a function 
of the Feynman parameters only. In Appendix B, 
Aab , G(b), G(a) are given explicitly. 

Next, keeping in mind the ordering procedure, we 
differentiate with respect to Xk : 

a a (e-QN
) 

oXk ox, Ll.J;i2 ", .. ",,=0 

= [Pli-1Gli-1(a)]Aab {[O:k GiN(b)]<Pik-1)(PkN) 

+ (O~kPiN)[GiN(b)"'k=O]}' (21) 

where P = [exp (_Q)]/Ll.1%+2. Referring again to 
Appendix A, we find that 

o 
;- GiN(b) = (Eik-1)bcGkN(c). 
uXk 

(22) 

The matrix Eik-l is given in Appendix B. It has the 
following properties: 

[(Eik- 1)bC]"'i=O = 0, (23a) 

These properties of Eik-l enable us to immediately 
carry out all subsequent derivatives with respect to 
Xi' ••• ,Xm on the first term on the right of (21). 

~F = ElF, 
ax; 

(27a) 

~F= FE2, 
ox; 

(27b) 

~ P = (PF)H(FP), 
oX i 

(27c) 

and 

Fik-1(Fik-1)I"'i_0 = Fii-1(Fik-1)' (28) 

All of these relations are easily derived from Appen­
dices A and B. The matrix H is just A with all the 
external masses set equal to zero. The matrices E1 
and E2 are given in Appendix B. They are closely 
related to E and satisfy (23a, b). Let us form a two­
component supermatrix X from 8 X 8 matrices: 

X= (FPF). 
E2p 

Then from (26) and (23a, b) we find that 

(%Xm)Xik-1 = 2 im- 1k mk-l> 
where 

2. = (ElP + FPFH FPF\. 
o E2pJ 

All further derivatives are given by 

~ k = (Z) .. k. 
ox" 

(29) 

(30) 

(31) 

(32) 
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Since only the upper component of this two-com­
ponent supermatrix is of interest, we project it out 
with 

t = (1,0). (33) 

Equations (24) and (32) represent a factorization of 
the amplitude similar to that found near oc = -1. 

The scattering amplitude LN(oc, s) is given by an 
integral over (15). In the expansion of the product, 
there will occur terms where Xi+! , ••• ,Xj _ 1 are not 
trivially integrated to give (16). We replace the func­
tions of the Feynman parameters that appear in (24) 
and (32) by the integrals over these functions and 
label them by the same symbol. In other words, we 
have 

fiJ-1 = I( (li(l 1_1),,+2 { n [X;+2 - «(lr(lr_1),,+2] ::l a 2} 
_*1 uXr 

X [exp_ (-QiH) .. _ ] (34) 
(~. ),,+2 Jii 1 , 

3-1 

where Q and 3. are the same functions that appeared 
in (5). The elements of G(a) are given by expressions 
similar to (34) with Q' and 3.'. If IN is that portion of 
LN(oc, s) with m of the x's contracted, we see that 

N+2-m N+3-m N+l 
IN = - L L'" L (-G)1rl-IA 

rl=1 r2=n+1 r",=rm_l+1 

x [( - E)rlr2-1 ... ( - E)rm_lrm-l 

+ t( -t)rlr.'-1 •.. (-Z)rm_2rm_l-1 

x (- X)rm_lr",-1AJ x (-G)rmN' (35) 

The total scattering amplitude is given by 

,00 r( _OC)g2 
L(oc, s) = L LN(oc, s) = ---'----<."'---

N=O (rx + l)(oc + 2) 

X L 2 L I~. (36) 
00 [ g2 IN N+! 

N=O 1617 (oc + l)(oc + 2) m=O 

The sum over N is performed in exactly the same way 
as for the oc = -1 case. 

L(oc, s) = r(-oc)g2 [A - GA(l + Erl G 
(oc + l)(oc + 2) 

+ GA t(l + 2)-1 XAG]. (37) 

The matrices E, t, and X are obtained by sutnming 
(34) over all values of n = j - i-I. For example, 

1 00 [ g2 ]8 1 
Eab = (oc + 2)8~ 16172(oc + 1) (OC + 2)8-1 (Eab

)l.t-l' 

(38) 

G and G are given by expressions similar to (34) and 
(38), but involving functions for ladders with only 
one end contracted. The term A/(oc + 2) in (31) is a 

regular function of oc near oc = - 2; since it has no 
poles, we discard it. 

Equation (37) constitutes the complete solution to 
the problem of summjng the ladder diagrams near 
oc = - 2. The poles in the oc plane come from the 
zeros of the determinants of (1 + E) and (1 + Z). 
Ostensibly there are a very large number of poles. 
However, as we shall see in the next section, there are 
at most five poles in oc. As the final step in this section, 
we rewrite the third term on the right of (37) in terms 
of a more useful set of functions. 

GA to + Z)-1XAG 

= GA(l + E1 + FFH)-1FF(I + E2)-IAG. (39) 

The zeros of the determinants of (1 + E2) and (1 + E) 
are just recurrences of the leading Regge pole, while 
the determinant of (1 + El + FFH) leads to at least 
two new dynamical poles and the pole to be identified 
as the daughter pole. In the next section we try to 
unravel our solution and investigate these various 
poles. 

4. DAUGHTER POLES IN THE EQUAL 
INTERNAL MASS LIMIT 

The complete amplitude in the form given by (37) 
is not very useful; it is too complicated. In order to 
understand the nature of the solution, we make the 
simplifying assumption that I' = P. Although the 
resulting amplitude does not satisfy two-particle 
unitarity, the existence of the daughter pole is inde­
pendent of unitarity. Even with I' = P, the complete 
amplitude is still quite complicated. Thus, we first 
look at the amplitude to lowest order. In other words, 
we assume that oc + 2 is of order g2, expand every func­
tion appearing in (37) and (39) in powers of g2, and 
keep just the leading power. In Appendix C we define 
a set of 15 functions of s in terms of which the various 
matrices can be written. In lowest order for I' = P, 

there are just five independent functions of sand 1'2. 
The only tricky step occurs in the lowest-order 
evaluation of the integral over the function X defined 
in (A17). From Table I of Appendix C we have 
Xli = - (fj2, and 

(40) 

where (I = Y + z. Since this integral is multiplied by 
g2, the natural procedure would be to set oc = - 2 
under the integral, only to discover that the result is 
divergent. The «(1)2("+2) factor in the numerator of the 
integrand is necessary to keep the integral convergent 
for oc > - 2. Since the whole procedure for isolating 
the singular portion of the amplitude near oc = - 2 
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involves finding a form valid for ex > -2 which can 
be analytically continued to ex < -2, this factor, or 
one like it, is necessary. This is the reason that we 
added and subtracted (C1i C1i_ 1)a+2 rather than (l)a+2 in 
manipulating Eq. (15). The correct prescription for 
evaluating (40) is to do the integral for ex > - 2 and 
analytically continue the result. To lowest order (40) 
is - (ex + 2)-1; since X is always multiplied by 
g2(ex + 2), this procedure yields a term of order g2. 
In the analysis of II, this contribution was overlooked, 
and an incorrect equation for the position of the poles 
was obtained. In Appendix D, we consider the effect 
of this change on the mixing of poles and cuts. 

With the matrices and functions of Appendix C it 
is a straightforward but tedious problem in matrix 
algebra to calculate L(ex, s) to lowest order. The 
result is 

[ 
2 2 

L(ex, s) = - g2 IX + 2--PG2K(S) 

+ (mi - m~)2J2s _ N(ex, S)] (41) 
ex + 2 - G2Jft2 D(ex, s) , 

where 

N(ex, s) = (ex + 2)( m~ + m~ - ~ - ;'2) 

+-m+m--G
2

( 2 2 S) 
ft2 1 2 2 

- G2 (m~ + ;;2- 2ft2)28
2 
+ K(S)} 

D(ex, s) = (ex + 2)2 - G2(ex + 2>[ K(s)(1 + J..2J2q2) 

-1..(1 - ~)J -G4 K(s) , 
ft2. 2q2 ~2 

and 4p2 = s - 2(mi + m~ + (mi - m~2js, 4q2 = 
s - 4#2, and G2 = g2j(161T2). The trajectory function 
of the leading Regge pole is K(s), where K(O) = Ij~2. 
Its explicit form is given by (14) with ft = v. 

The first term in (41) is the recurrence of the leading 
Regge pole which arises from the use of Mellin rather 
than Legendre transforms. The second term has the 
correct residue and position at s = 0 to be the 
daughter pole. If the leading and daughter Regge 
poles are related by (1), the corresponding relation 
for the residues of Mellin poles is 

(m; - m~)2 
ris) = ex(O) rl(O) + N.S. (42) 

2s 

To lowest order ex(O) is replaced in this expansion by 
-1. The third term in (35) contains two new poles 
near IX = - 2. These poles are present in the equal 
mass limit. The significance of these new poles is 

uncertain. They do mix with the Regge cuts. To 
lowest order in this model, the daughter pole is a 
fixed pole. This is the first indication that the daughter 
pole behaves very differently from the leading pole. 

Keeping # = v, we follow the first daughter pole to 
higher order in the coupling constant. The daughter 
pole is one of the zeros of the determinant of 
(1 + E1 + FFH). As shown in Appendix C, this 
determinant factors, for ~ = v, into the product of 

1 + Yes, ex) + s[2go(s, ex) - V(s, ex)], (43) 

and the determinant of a 3 X 3 matrix. The functions 
in (43) are defined in Appendix C. In Eq. (12) we saw 
that the recurrence of the leading pole is given by 
the solution of 1 + Y(ex, s) = o. Since go and J are 
finite at s = 0, the pole in L(ex, s) defined by setting 
(43) equal to zero has the correct s = 0 limit to be 
the daughter pole; this result is true to all orders in the 
coupling constant. To lowest order it agrees with the 
daughter pole given in (41). Once (43) is identified 
as the daughter pole, we can calculate its residue to 
all orders, keeping only those terms in L(ex, s) that 
contain this pole. The result is 

L ( ) 
_ g2r( -ex) 

a IX, S -
(ex + 1)2s 

X {(m~ - mi)G(3) + s[G(4) - G(5)W. (44) 

(ex + 2)[1 + Y + s(2go - V)] 
G(a) refers to the appropriate integrals over the 
functions introduced in (20) and given explicitly by 
(B2). We have used the left-right symmetry of ladder 
diagrams to replace G(a) by G(a). An explicit evalua­
tion of the first few terms of G(3) and Y(s, 0) shows 
that 

G(3)2 -IXG(IX,0)2 
----~'------=---~~-
1 + (djdex)[(1X + 2) Y(IX, 0)] 1 - (dldex)F(ex, 0) , 

(45) 
where common factors have been discarded. F(IX, s) 
and G(ex, s) are given by (5) and (6). Therefore, the 
daughter pole has the correct residue. 

The trajectory function for the daughter pole is 
given to all orders in the coupling constant by the 
solution of 

IX + 2 = - ~ - dYi dz; 
00 ( g2)N 1 

N=l 161T2 (ex + 1)N 
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C) + -<=>- + -<D- + -QD- + ..... 

~ -~ ---ECD- - -fTI)- - ..... 

( a ) 

-C> + -cD- + -<II>- + -<TID- + ..... 

( b) 

FIG. 2. (a) The diagram sum which describes graphically the 
analytic structure of the daughter trajectory function. (b) The 
corresponding diagram sum for the leading trajectory. 

This expression can be simplified by using the vari­
ables (1; = Yi + Z; and 15; = Yi - Zi' The part of the 
integrand of (46) in square brackets has the form 
necessary to trivially carry out the 151 and 15 N integra­
tions9 ; the effect of these integrations is to replace 
(46) by 

g2 reO( + 3) 00 ( g2)N 1 
0( + 2 = - 167T2(0( + 1)(,u2)a+3 + N~2 167T2 (0( + l)N 

1100 N=1 [x~+2 _ «(1.(1. )«+2] a2 
x - IT dx.· • .+1 -

S 0 i=1' 0( + 2 ax~ 
-QN 

x «(11(1N)a+2 ,illt+2 {15(ZN)15(Y1) - 15(zN)(l(Z1)}' 
N 

(47) 

This expression should be compared with (5) for the 
leading pole. The daughter pole first begins to move to 
the right in the complex 0( plane in order g4. The slope 
of the leading pole at s = 0 is +G2/(6,u4) and that of 
the daughter pole is +O.09G4/(,u6). The effect of the 
delta functions inside the final curly brackets of (47) 
is to give the trajectory function a singularity structure 
which is identical to that arising from the sum of 
diagrams in Fig. 2(a). The correspondin,g sum for the 
leading trajectory is given in Fig. 2(b). Because of the 
minus signs in Fig. 2(a), all two-particle cuts cancel 
out term-by-term from the daughter trajectory func­
tion.10 We show in the next section that if ,u =F v the 

I The dependence of the coefficient of s in Q1N can be written as 
olAo, with A an N X N matri){ and 0 a column matri){ of the Ot. In 
terms of this matrix, the coefficient of s in (46) is proportional to 
(A1kOk)(OkAkN) = (c3/c301)otAO][(c3/c3oN)OIAOj. If ON is integrated by 
parts, only the end points contribute. The resulting integral over 
01 is done exactly. 

10 The analyticity properties of perturbation graphs are discussed 
in detail in Ref. 5, Chap. 2. 

m'3- + 
m. 

D--- + II>- + ..... 

FIG. 3. The diagram sum which describes graphically the 
analytic structure of the daughter residue function. 

two-particle cuts enter with coefficients proportional 
to (,u - V)2. 

The residue of the daughter pole in (44) has the 
property that it vanishes to all orders if the external 
masses are equal. The same manipulations used to go 
from (46) to (47) lead to an expression for the form 
factors coupling the Regge pole to two-particle states 
that has only three-particle singularities: 

(m~ - mD2G(3) + s[G(4) - G(5)] 

00 ( g2 l)N 
= (m~ - m~) + II 167T2 (0( + 1) 

X dy; dz; II' · .-1 f 
N (x~+2 - (a .(1. )"'+2) 

i=1 0( + 2 

a2N 
{ e-

Q1N
} X a,r;2';2 [15(YN) - 15(zN)] A.x+2 . 

UX1UXN U ,N 

(48) 

The corresponding diagram sum is given in Fig. 3. 
Again the two-particle cuts cancels out.10 

Equations (44), (47), and (48) completely describe 
the first daughter pole in our model. The first com­
ment to be made is that the daughter pole is very 
different from the leading pole. Its motion is deter­
mined by the scattering of three (or more) particles. 
Since the three-particle contributions of ladder 
diagrams are not those that would be expected to 
dominate a three-particle scattering amplitude, we 
conclude that our model is useless for determining 
the actual motion of the daughter pole. Such a 
determination would require an accurate treatment 
of three-particle scattering. This objection applies 
also to Bethe-Salpeter calculations using the ladder 
approximation.4 In the next section we see to what 
extent relaxing the ,u = v constraint changes these 
conclusions. The second point to be made is that the 
residue of the daughter pole vanishes to all orders 
in the coupling constant, for all energies, if the ex­
ternal masses are equal. The general arguments on 
the existence of daughter poles only show that the 
singular part of the daughter residue vanishes in the 
equal mass limit. 

With the advantage of hindsight we can argue on 
general grounds that the daughter pole in this model 
should contain no two-particle singularities. The 
leading Regge trajectory function satisfies a dispersion 
relation in s with the cut beginning at the two-particle 
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threshold; the imaginary part, up to kinematical 
factors, is given by the form factor squared IG(IX, S}12. 
If this relation between the imaginary part of the 
trajectory function and the square of the form is 
assumed to be a general property of Regge poles in a 
unitary theory, then, since the daughter pole does 
not couple at all to equal mass two-particle states, it 
will not have a two-particle cut. If the coupling to 
equal mass particles dominates the trajectory function, 
three-particle intermediate states would be expected 
to be very important. Presumably the coupling of a 
daughter pole to a three-particle amplitude could be 
described by an expression similar to that involved in 
the coupling to unequal mass two-particle states, only 
with a variable mass. This argument on three-particle 
dominance requires that the nonsingular terms in (I) 
vanish for equal masses. 

5. UNEQUAL INTERNAL MASSES 
IN LOWEST ORDER 

In the previous section we extracted the daughter 
pole from the complete scattering amplitude and 
studied its properties to all orders in the coupling 
constant. This separation was possible only with the 
simplifying assumption that the masses on the sides 
of the ladder were equal. We now want to see to what 
extent the conclusions obtained with this assumption 
depend upon it. If ml = P ~ v = ma, then the 
scattering amplitude represented by ladder diagrams 
will satisfy two-particle unitarity. The problem of 
separating out the daughter pole to all orders becomes 
algebraically very formidable. Rather than attempt it, 
we look at the zeros of the determinant of (1 + El + 
FPH) to lowest order in the coupling constant and 
investigate the daughter pole only to this order. From 
the relations given in Appendix C, we see that 

det (1 + E1 + FPH) 

= [€ - K(S)]{€3 - €2[ K(s) (1 + 2~2) + r 2~2J 
+ €[A2rK(S) __ 1 (1 _ ~)J + K(S)} = 0, 

2q2 p 2V2 2q2 p2V2 

(49) 

where IX + 2 = G2€ and K(s) is again the trajectory 
function of the leading pole. The mass of the ex­
changed particle is A., and r is given by 

r _ (p.2 + 1'2)5 _ (p,2 _ '1'2)2 

- 25p.2v3 ' 
(50) 

and 4q2 = S - 2(f-l2 + 1'2) + (P2 - V2)2/S. The first 
factor in (49) is just the recurrence of the leading 
Regge pole; we neglect it now. The daughter pole is 

qne of three roots of a cubic equation; the other roots 
are the two new dynamical poles which appear in (41). 
If p = v, one of the roots of the cubic equation is 
p.-2, in agreement with (41), For ft ~ v and s = 0, 
q2 = 00 and the cubic equation becomes 

(51) 

where 

1 (f-l2) K(O) = -2--2 In '2 . 
f-l - 11 v 

Thus, it contains a zero whose position satisfies the 
condition for a daughter pole. If s = 00, we find that 

€(€-;V)(€+:v) =0. (52) 

By comparison with the equal mass limit in (41), we 
see that the middle root of (52) is the daughter tra­
jectory. Thus the daughter pole certainly moves to 
lowest order in the coupling constant in contrast to 
its behavior for p = 'V. For s ~ 0, 00 there is no 
simple analytic solution in general. However, if 
AS = 0, we find that 

[€ - K(s)] ( E - :1') (€ + ;1') = O. (53) 

In this limit, the daughter trajectory is parallel to 
that of the leading pole. Since the three-particle thresh­
olds in (47) become degenerate with the two-particle 
thresholds, it is not surprising that to lowest order 
the trajectories should be parallel. On the other hand 
the transition to A2 = 0 is apparently singular. More­
over, there are problems with infrared divergences in 
higher orders if A2 = O. 

For A the same order of magnitude as p and v, we 
can obtain an expansion of the daughter pole around 
s = O. For both s and ~ = (ft - 1')2 small, we find 
that 

€ = 1..[1 + J..l + L + 56 (1. - p2) + ... J 
II f-l2 12,i 80ft' ft4 45 18A.2 

(54) 
while the leading pole is given by 

€ =- 1+- -+- +- -+-+- + ... 1 [ 1 (S ~ ) 1 (52 S~ ~2 ) ] 
! 2 f-ll! 6 12 ",4 30 60 80 ' 

(55) 

where IX! + 1 = GlIcz. Note the singular dependence 
on All in (55). The daughter pole moves more slowly 
than the leading pole in this limit; hence, three-particle 
effects would still be expected to dominate. If ~ is 
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large, the daughter pole can also be expanded in the 
neighborhood of s = o. 

f:d = K(O) - 2s [1 _ K(O) (#2 + '1'2 + 2A2) 
(#2 _ '1'2)2 2 

K(0)2A2 J 

f:, = K(O) - 2s [1 _ K(O) (p,2 + Y2)J. (57) 
(#2 _ '1'2)2 2 

If A2 = '1'2 < #~, we find from (56) and (57) that the 
daughter pole has a smaller slope than the leading 
pole at s = 0 for '1'2/#2 > 1. We conjecture that for 
all values of '1'2/#2 the leading pole will eventually 
move faster than the daughter pole. 

Equation (49) is not valid near the two-particle 
threshold since K(s) becomes infinite there. On the 
other hand, it is valid for s approaching ± 00. A 
solution can be obtained for f:d in powers of rl; the 
zero-order solution is given by (52). In this large s 
limit the daughter pole is identified by extrapolation 
to equal masses. 

In t):lis expansion there is no restriction on the magni­
tude of b. The corresponding expression for the leading 
trajectory is 

f:! = ![In :22 + 21riO(s)J. 
S # 'II 

(59) 

Notice that the imaginary part of f:(j has the same sign 
as that of E!, but is smaller by a factor of S-2. Paren­
thetically we remark that one of the other two dynam­
ical poles is given by (58) withy replaced by -'I'. 

Since the imaginary part of this pole is negative, there 
would be difficulties in interpreting it if it becomes 
physical. The third pole is asymptotically parallel to 
the leading pole and has an imaginary part propor­
tional to rl; this third pole may be identified as the 
normal secondary Regge trajectory, since it behaves 
very similarly to the leading pole. Inasmuch as the 
expansion of the daughter trajectory function in 
powers of rl converges for s above threshold, (58) 
may be taken as an indication that the imaginary 
part of the daughter trajectory is less than that of the 

leading pole for all s. Hence, our conclusion that the 
daughter pole is strongly affected by three-particle 
scattering still holds. Although for unequal internal 
masses the daughter moves to lowest order in g2 and 
has a two-particle cut in contrast to the results of the 
preceding section, the effect of the two-particle 
singularities is substantially less important for the 
daughter pole than for the leading pole. In general, 
the daughter pole does not move parallel to the 
leading pole. It moves to the right less rapidly and 
develops a smaller imaginary part at the two-particle 
threshold. 
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APPENDIX A 

In this Appendix we give both explicit definitions 
and various identities for the functions of the Feynman 
parameters that are used in Sec. 3. The determinant 
/l N is given by 

Ll Xl 0 0 

Xl L2 X2 0 

o Xs 

/IN = det 0 0 , (AI) 

XN 

XN LN 

where Li = Xi + Yi + Zi + XHl. From (AI) it is 
readily seen that if Xi = 0, /IN factors as discussed in 
I and II. It will be convenient to relabel the deter­
minant for a ladder by its first and next-to-Iast rungs. 
In this notation /IN becomes /llN. If Xi = 0, /llN 
factors into the product (/lli-l)(/liN) with the under­
standing that Xi = 0 in the determinants. In addition 
it follows from (AI) that 

(O/OXi)/liN = /lli-2/liN + /lli-l/lHlN. (A2) 

In (A2) and all further equations involving derivatives 
with respect to Xi' it is understood that Xi is set equal 
to zero after differentiation. Equation (A2) is valid 
for all I ~ i ~ N + 1, if we set /lii~l = 1 and 
Il ii- n = 0, n ~ 2. 

The functions g'J,;, h'J,; are treated as a pair. 

N 

h'J,; = !/llk-lYI,,Gk+lN+l' 
k=l 

N 

g'J,; = L GlkYkll/c+lN· (A3) 
k=l 
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If the superscript is z, Zk replaces Yk in (A3). The 
function Gii is defined in (19). If Xi = 0, these 
functions factor to give 

(A4) 

The notation in (A4) follows the rules used in labeling 
Au. We define another set of functions gl't., nYk by 

k 

Ii~k = IA;i-lY jG i+1k' 
i=i 

k 

g~k = I Gi+liY jA1+1k' (AS) 
i=t 

Equation (AS) differs from (A3) by the external 
subscript on the function Gik . For Xj = ° these new 
functions factor according to the rule given in (A4); 
they also obey the identity gk + gJk = Aik · 

The derivatives of grN and h!N are given by 

(A6) 

where 

(A7) 

The corresponding derivative of gCh) is given by (A6) 
and (A7) with K(11) replacing K(H) in (A6) and g(n) 
replacing g(h) in (A7). The functions H, K, 11, and I: 
have the property that they vanish if an internal Xi 
is zero. Moreover. their derivatives are given by 

(o/OXj)HkN = 11ki- 1Gi+l N+l' 

(o/OX;)Klk-l = Gli-1I:ik-l' (A8) 

The derivatives of 11 and I: are also given by (A8); 
in addition, Kri + 1::; = -Gil!!).ii' 

Another sequence of functions to be studied in this 
Appendix is obtained from fN = Av . 

N 

fIN = I Alk-ly.,z"/)"1c+lN 
k=l 

N-l N 

+ I I A1k+l(Y~i + ZkY.i)Gk+1iAI+1N' (A9) 
k=1J~k+l 

If Xi = 0, we have 

fIN = Ali-l~N + fli-lAiN' (AlO) 
The derivative if fIN with respect to Xi is given by 

.i.f - p2 + pI + (nri-lg:N + Iiti-lgfN) 
~ IN - !i-1 iN i\ i\ • 
uXi U!i-lUiN 

where 

p2 _ f1i-~li 1 - fli-1Ali-2 
Ii-I - A2 . 

Ii-l 

If X1c = 0, we see that 

FiN = P;k-l, 

P~i-l = P:i - 1 · 

In addition we need the relation 

(All) 

(A 12) 

a 1 -11 gfN $ gfN 
;- PiN = Pik-l + H;.k-l A + 11£k-1 ~. (A13) 
uXk UiN UiN 

where 

F - fi+lk-2Aik-l - hk-2!).i+1k-2 
ik-l - A2 

;k-1 

+ h+lk-lAik-2 - h1c-lAi+lk-2 

A~k-l 

_ 2 A uC- 2 (h+11c-l!).ik-1;:- hk-lAHlk-l). (A14) 
Aik- 1 Aik-l 

If Xi = 0, FiTc- 1 = O. One more relation involving 
F ik-l is needed: 

(O/OXj)Pik_ 1 = llr,-ll::k-l:.+.11i~-lKrk-l' (A1S) 

The final functions that need be considered are the 
pair (Ali- 2/Ali- 1) and (AHIN/AiN)' The.xk = 0 prop­
erties of these are obvious. Their derivatives are given 
by 

(A16) 

where 

Both Xik-l and its derivative with respect to Xi vanish 
if x; = O. 
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APPENDIX B 

In this Appendix the various matrices used in Secs. 
3 and 4 are given explicitly. 

-),. -(ex + 2) 0 0 0 m~ m~ s 

-(ex + 2) 0 0 0 0 0 0 0 

0 0 0 m~ m~ 0 0 0 

0 0 m~ 0 s 0 0 0 

Aab = 0 0 m2 

• s 0 0 0 0 

m~ 0 0 0 0 0 0 0 

m~ 0 0 0 0 0 0 0 

s 0 0 0 0 0 0 0 

(BI) 

The matrix H is obtained from A by setting m~ = 
m~ = O. The two row matrices C(a) and G(a)t are 

G(a li-l =, , , , , - ) (1 f1li_ 2 Gli- 1 Tzri-l Tz:i - 1 
f1li- 1 f1li- 1 f1li- 1 f1li- 1 

K~i-l' Kii-l' Fii-i) ' 

(
1 f1i+1N Gi+1N+I g~N h:N 
, f1iN ' f1iN 'f1iN ' f1iN ' 

H~N' H:N, FIN) . (B2) 

If Xi = 0, i ~j ~ N + 1, we find from the formulas 
of Appendix A that GiN(a) = Fii-l(a), where Fii-l(a) 
is obtained from GiN(a) by replacing N by j - 1 in 
(B2) and setting F(3) = F(6) = F(7) = O. There is a 
similar relationship between Gli_l(a) and Fii-l(a) with 
j replacing 1 and the 3,6, 7, elements zero. 

The matrix Eab is given by 

(Eab)/k-I 

o 0 

o 

o 

o 
o 

o 

o 

o 0 Hl:c-l 

o 0 HA-l 

o 

o 
o 

o 

o 

o 
o 

o 
o 

o 

o 

o 
o 

000 

000 

000 

000 

000 

000 

000 

The matrix El is obtained from E by setting all ele­
ments of column three equal to zero; E2 is obtained 
from £1 by transposition and interchanging K and n. 

TABLE I. The fifteen functions of s used in calculating the scat­
tering amplitude are listed together with the corresponding 
functions of the Feyman parameters. The correspondence is 
defined by Eq. (CI). Also given are the functions of the Feyman 
parameters used in the calculations of the lowest order amplitude. 

J 

Y 

,1. 

X 

F 

G'+1k-l/,1.,k_l 

,1.,k_./,1.,k_l, ,1.'+1k-l/,1.'k-l 

g,k-l/,1.,k-l, h,k-l/,1.,k_l 

K''",.-I, H::k - 1 

X i - k1 

F,k-l 

Fl.-I, F;.-1 

1-1 

(11 

yla 
_ylaS 

-l/a' 

2yzla8 

-yzla' 

l/a' 

(FA-l,1.ik_2)/(,1.'k_l), (F,2k_ 1,1.'+lk_l)/(,1.'k_l) - y zla8 

(gt.-lhrk-l)/(,1.'k-l)' fla2 

(glk-ll:k-l)/(,1.;k-l)', (y ~ z) 

(g" P)ik-l/(,1.ik-l), (Ii" P)ik-l/(,1.;k-l) 

(FA-l)(F:k- 1) 

APPENDIX C 

yz/a2 

_y2zla8 

y2z2/a' 

The matrices that occur in the complete solution 
for L(IX, s) near IX = -2 contain functions of s which 
are defined by (34) and (38) as integrals over combi­
nations of the functions discussed in Appendix A. 
Let us rewrite the operation described by (34) and 
(38) in symbolic form 

(Cl) 

There will be another operation for the functions 
involved in G(a). Each of the Feynman functions in 
Appendix A will generate a corresponding function of 
s by (Cl). In Table I we list the 15 ostensibly inde­
pendent functions that can occur. The left-right 
symmetry of ladder diagrams has been used to reduce 
the number. There are probably several general 
identities relating these functions, but we have not 
investigated this question. In cases where the func­
tions are labeled by a y superscript, there is also a 
corresponding z superscript which we do not include. 
When I' = Y, Y and z functions are equal; this is the 
simplification that enables the daughter pole to be 
factored out so easily. The product functions, such as 
gX, occur in the matrix (FF). Using Table I we gen­
erate the matrix E from (B3) by direct substitution. 
We will not write E and the other matrices explicitly. 
The Regge poles occur as zeros of the determinants 
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arising from the various inverse matrices in (31) and (33). These determinants are 

det (1 + E) = (1 + Y)3, (C2) 

(C3) det (1 + E2) = (1 + Y)2, 

det(l + El + FFH) 

1 - (ex + 2)A + SFI 

(KZ + sr - (ex + 2)gl) 

- (z -- y) 

= tel + Y) det [it2 _ (ex + 2) X + F 
s s 

+ (ex + 2)2/si5. + sF 

- 2(ex + 2)Fl- t(1 + Y)] 
If ft = P, (C4) can be written in the form 

det (1 + El + FFH) 

= [1 + Y + s(2go - tJ)]D(l + Y), (C5) 

where D is the determinant of a 2 X 2 matrix. As 
discussed in Sec. 4, the solution of 

[1 + Y + s(2go - tJ)] = 0 

is the daughter trajectory to all orders in the coupling 
constant. Since (l + Y) = ° is the recurrence of the 
leading pole, only (C4) will contain new poles. Given 
the factorization (C5) it is straightforward to invert 
(1 + E1 + FFH) and keep only those elements that 
contain the daughter pole. 

In Table I we also list the values of the Feynman 
functions for k = i + 1. These are the lowest-order 
values and are used in the manipulations leading to 
(35). If (ex + 2) is set equal to zero under the integral, 
in lowest order the operation T{f}becomes 

T{f} = L>:Jdy dz exp [- ft2y _p2Z + (syz/(1)][ (C6) 

This procedure does not apply to X and i5. which are 
singular in this limit. These are discussed separately. 
With the change of variables (1 = Y + Z, (IE = Y - z, 
Eq. (C6) can be written as a sum of terms of the form 

1 il En In =- dE--
m 2 -1 [M]m' 

(C7) 

where M = Hft2 + p2 + (ft2 - p2)E - s12(1 - E2)]. 

To express the functions in Table I we need m = 1, 
n = 0, 1,2, and m = 2, n = 0, 1,2,3,4. If ft = P, 

integrals with odd values of n vanish; the other 
integrals are the five functions introduced in II and 
denoted by A, ... ,E. The trajectory function of the 
leading pole is given by.Jf1. = K(s). All other functions 

}s(gll _ gZ) 

1 + Y + s(2go - V) 

+ }(z -- y) 

can be expressed in terms of this one, plus various 
rational functions of the masses and s. If A = 
Hft2 - p2) and! = !(ft2 + p2), the identities neces­
s~ to obtain (41) and (49) are 

10 _ 2A - ~s __ 1_ K(s) (C8) 
2 - 2p2S(~2 _ N) 2p2 ' 

11 - ~[K(S) - 2~ - s ] (C9) 
2 - p2s 2(~2 _ A2) , 

I~ = 4K(s) _ 4A I; _ (4~ - s) I~, (CI0) 
s s s 

-tIi + .!.... I~ = - ! + ! [A2I~ + 2A(~ - s/4)I~ 
16 s s 

+ (~ - s/4)2Ig]. (CI2) 

These relations, together with the expressions for 
lowest-order functions given in Table I, plus lots of 
algebra, enable us to obtain the results quoted in 
Secs. 4 and 5. In these calculations we use the fact that 
ex + 2 is of order g2 to discard terms like (ex + 2)g~ 
in (C4). 

The correct evaluation of X (and i5.) was discussed 
in Sec. 4. In terms of the notation of (C7), X is just 

X = -r(ex + 2)I~+2 ~ -(ex + 2)-1 = -i5., (C13) 

Thus, in (C4) we retain (ex + 2)X, but not (ex + 2)2i5.. 
The derivation of (41) requires the lowest-order 

expressions for G(a). An analysis of the simple box 
diagram shows that the proper choice is G(1) = 
G(3) = 1 and all other G(a) = 0. In Appendix D we 
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need the G(a) appropriate to a ladder terminated at 
one end by a contracted ring. The correct prescription 
is again found by referring to a low-order diagram. 
In this case we find that, up to a coupling constant, 

G(l) = J = Ig, 
G(2) = Ll = K(s), 

G(4) = gil = l[Ig + I~], 
G(5) = g" = l[Ig - I~], 

G(8) = F1 = -l(1g - 1~). (CI4) 

The other G(a) are zero. The masses in the integrals 
in (C14) are ml and m2. If nil = m2, G(4) = G(5) and 
the daughter pole does not mix with the cut. 

APPENDIX D: MIXING OF 
POLES AND CUTS 

The previous work on the mixing of Regge pole 
and cuts contained a minor error. The nature of this 
error was discussed in Sec. 4. In this Appendix we 
repeat the calculation correcting the earlier error and 
including the daughter pole. The diagram we con­
sider is given by Fig. 3 of II. As discussed there, it 
generates a Regge cut. The only change we make is 
to let the external masses be different; in addition, we 
take the masses to be different in the lines coupling 
the external ladders to the cut generating diagram. 
(This means that in Fig. 3 of II the lines denoted by 
cx1 , !51 carry mass m l and the lines denoted by CX3, !53 

carry m2 .) All other internal masses are equal to Jl. As 
shown in (45) of II, extracting the most singular part 
of the cut-generating diagram near cx = -2 leads to 
a diagram with the external ladders having one end 
terminated by a contracted rung. The sum of these 
ladders is obtained from (37) by an appropriate choice 
of G(a) or C(a). This choice of G(a) is discussed in 
Appendix C. We consider only the lowest-order 
solution. G(3), G(6), and G(7) are zero identically, 
and the other G(a) are expressible in terms of the set 
of basic functions discussed previously. A lengthy 
problem in matrix algebra, similar to that leading to 
(41), results in the following factor for an external 

ladder: 

cx + 2 + G2/Jl2 (m~ - m~)2 

D(cx1s) 4p2s 

R(s) - (m~ + m~ - s)/(2m~m~) 
)( - 1. (D!) 

cx + 2 - (G 2/Jl2
) 

This equation replaces (46) of II. In the first term of 
(Dl), D(cx, s) is given in (41); and for simplicity we 
have set all masses in its residue equal to Jl2, since 
this term is present even in the equal mass limit. In 
the second term of (Dl), K(s) is just K(s) with the 
masses ml and m2 replacing Jl and 11. We see that the 
daughter pole mixes with the Regge cut. However, 
since 4p2s is finite at s = 0, the residue of the daughter 
pole is nonsingular. When (Dt) is combined, the cut 
contribution given by (47) of II and terms with one 
or no external ladders are added, the total amplitude 
becomes 

where 
G4[K(s W pes, Sl, S2) = i 1 

, 

[A(S, S1' sJ] (S2 - Jl2) 

A = S2 + s~ + s; - 2ss1 - 2ss2 - 2S1S2 , 

and Nis) is the residue of the daughter pole in (Dl). 
The conclusion reached in II that the leading pole does 
not mix with the cut is correct, even with the mass 
differences included. However, the daughter pole 
mixes with the cut, as do the other two dynamical 
poles near cx = - 2. There is no singularity at s = 0 
associated with the daughter pole when it mixes with 
the cut. The leading singularity in the IX plane remains 
a pure pole. l1 

11 A conjecture based on analytic continuation of multi particle 
unitarity suggests that the leading Regge pole should appear in the 
curly brackets of (02). V. N. Gribov, I. Va. Pomeranchuk, and K. 
A. Ter-Martirosyan, Phys. Rev. 139, 184 (1965). 
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The irreducible representations occurring in the decomposition of the Kronecker squares of irreducible 
representations of finite and continuous groups are shown to be readily separable into symmetric and 
antisymmetric parts using Littlewood's method of plethysm. Particular applications of the rotation and 
symplectic groups, together with selection rules for isoscalar factors, are given. 

I. INTRODUCTION 

THE Kronecker square r X r of an irreducible 
representation r of a group G is always reducible 

to the sum of a symmetric product representation [f2] 
and an antisymmetric product representation {r2}, 
such thatI.2 

r X r = [f2] + {f2}. (1) 

The resolution of Kronecker squares into symmetric 
and antisymmetric product representations is of 
particular significance in determining selection rules 
over and above those normally found by the de­
composition of the appropriate triple Kronecker 
products.1-3 

Judd and Wadzinski3 have recently discussed the 
resolution of the Kronecker squares of the irreducible 
representations of the continuous groups R7 and G2 • 

Their method, which basically makes use of a chain 
calculation starting with the trivial resolution of a 
few simple representations, rapidly becomes exces­
sively tedious. The procedure of resolving Kronecker 
squares may be greatly simplified by using the more 
direct method of LittIewood's4-9 operation of pleth­
ysm. With seemingly only two -exceptions,lO,n the 
powerful technique of plethysm has been unrecog-

• Research sponsored in part by the Air Force Office of Scientific 
Research, Office of Aerospace Research, United States Air Force, 
under AFOSR Grant No. 1275-67. 

1 M. Hamermesh, Group Theory and Its Application to Physical 
Problems (Addison-Wesley Publishing Company, Inc., Reading, 
Mass., 1962). 

2 J. S. Griffith, The Theory o/Transition-Metal Ions (Cambridge 
University Press, New York, 1961). 

3 B. R. Judd and H. T. Wadzinski, J. Math. Phys. 8, 2125 (1967). 
4 D. E. Littlewood, J. Lond. Math. Soc. 11,49 (1936). 
6 D. E. Littlewood, Phil. Trans. Roy. Soc. London A239, 305 

(1944). 
6 D. E. Littlewood, Phil. Trans. Roy. Soc. London A239, 387 

(1944). 
1 D. E. Littlewood, Theory of Group Characters and Matrix 

Representations 0/ Groups (Oxford University Press, New York 
1958), 2nd ed. 

8 D. E. Littlewood, A University Algebra (William Heinemann 
Ltd., London, 1950). 

• D. E. Littlewood, The Skeleton Key of Mathematics (Harper 
and Row, New York, 1960). 

10 M. Kretzschmar, Z. P,lysik 158, 284 (1960). 
11 J. P. Elliott, Proc. Roy. Soc. (London) A245, 128 (1958). 

nized by physicists. In the present paper, we briefly 
review Littlewood's method and then consider its 
application to our central problem of resolving the 
Kronecker squares of irreducible representations 
into their symmetric and antisymmetric parts for 
both finite and continuous groups. 

II. PLETHYSM AND THE GENERAL 
LINEAR GROUP GL(n) 

The construction of basis functions tfo~r) that trans­
form according to an irreducible representation r 
of a group G is a common problem in group theory. 
If the irreducible representation r is of degree n, 
then the basis function tfo~r) also spans the representa­
tion {I} of the general linear group GL(n). The 
products [tfo~r)y of the basis functions tfo~r) form 
bases for the different irreducible representations {A} 
of GL(n) contained in the Kronecker product 

{lY = I gA{A}, (2) 

where the A'S are partitions of the integer r, and gA is 
the number of times a given irreducible representation 
{A} occurs in the decomposition of the product. The 
irreducible representations {A} of GL(n) generally will 
be reducible under restriction to the group G. 

The product functions constructed from the tfo!r),s 
that form a basis for the {A} representation of GL(n) 
have the symmetry associated with the corresponding 
representation (A) of the symmetric group of order r!. 
In practice we are usually interested in constructing 
product functions of a particular symmetry type, and 
hence, in picking out those product functions forming 
a basis for the representation {v} of GL(n) which 
turns up in the sum IgA{A} of Eq. (2). The decom­
position of the representation {It} of GL(n) , on 
restriction to G, can then be studied. 

Let us suppose that r corresponds to the irreducible 
representation tu} of GL(m) and that the functions 
tfo~) form a basis for this representation. If the di­
mension of {.u} is n (m ::;; n for {,tt} ¢ {O}), then this 
set of functions also forms a basis for the representa-
tion {I} of GL(n). We now construct powers and 
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products of the functions cf><:) of degree r, and from 
these product functions we choose a basis for the 
representation {v} of GL(n), where (v) is a partition 
of r. In general, these product functions form a basis 
for a reducible representation of GL(m}. If we denote 
the set of functions forming a basis for the {A} 
representation of GL(m) by cf>u.), and if we denote 
the set of powers and products of the functions 
cp{/J) forming a basis for the {v} representation of 
GL(n) by W/J}\{v}, then clearly 

1cf>{/J)I{v) = 2 cf>{;'). (3) 

The above result can be expressed equivalently in 
terms of transformation matrices. The functions cp{/J) 
may be expressed as linear combinations of powers 
and products of functions cp{l} that form a basis for 
the {I} representation of GL(m). The matrix A{/J}, 
which transforms the cf>{/JJ. s, is then said to be an 
induced matrix of the matrix A which transforms 
the functions CP{I). The operation I cf>{/l} I {vl, which we 
perform on the functions cf>{/J}, is equivalent to forming 
the induced matrix IA(/J}I(v) of the induced matrix 
A{/l}. An induced matrix of an induced matrix is, in 
general, reducible to the direct sum of other induced 
matrices A{;,}, each of which is the transformation 
matrix appropriate to the irreducible representation 
{A} with basis functions cf>(;'), Equation (3) is thus 
equivalent to the equation 

IA{/J}I{v) = ! A{;') (4) 

written in terms of the transformation matrices with 

t denoting a direct sum. 
In Littlewood's development of the character theory 

of continuous groups, the symbol {A} is used to repre­
sent an S function which is defined as the spur9 of the 
induced matrix A{;,}. The operations physicists usually 
associate with representations of continuous groups 
reflect the properties of the S functions corresponding 
to the various matrices transforming the elements of 
the representations. For example, the decomposition 
of a product representation {A} X {Il} into its simple 
components is equivalent to the expression of the 
product of two S functions as the sum of S functions. 
Equation (4) may be taken as defining a particular 
type of multiplication of S functions. 4 Taking the 
spurs of the matrices, we have the definitive equation 
for the plethysm of S functions: 

{Il} ® {v} = 2 {1}}, (5) 

where the symbol ® is used to indicate the operation 
ofplethysm12 and {Il} ® {v} is read as "{Il} plethys {v}." 

12 The symbol ® is frequently used to designate the Kronecker 
outer product; here we reserve it solely for the operation of pie thy sm. 
In general, we shall follow Littlewood's notation (Ref. 7) throughout. 

The basic algebra of plethysm has been developed 
by Littlewood, and here we simply state the principal 
results. Plethysm is distributive on the right with 
respect to both multiplication anq addition, i.e., 

A ® (B + C) = A ® B + A ® C, (6) 
and 

A ® (BC) = (A ® B)(A ® C) = A ® BA ® C. (7) 

For addition, subtraction, and multiplication to the 
left we have: 

(A + B) ® {A} = 2 rV/l;,(A ® {1l})(B ® {v}), (8) 

where r/lV;' is the coefficient of {A} in {Il}{v}; 

(A - B) ® {A} = 2 (-lyr/lv;,(A ® {1l})(B ® {v}), 

(9) 
where {v} is the partition of r conjugate to {v}; 

(AB) ® {A} = 2 g/lv;,(A ® {1l})(B ® {v}), (10) 

where g/lV;' is the coefficient of the character XC;,) of the 
symmetric group on n symbols, where X(/J)X(v) = 
L g/lV;'X(;'), and (Il), (v), and (A) are all partitions of n; 
and 

(A ® B) ® C = A ® (B ® C). (11) 

These formulas may all be readily extended by 
repeated application of the basic formulas. For 
example, we readily obtain 

(A + B - C) ® {A} 

= 2 (-lyr/Jv;,«A + B) ® {1l})(C ® {v}), 

= 2 (-lyr/Jv;,r~TI'(A ® {1f})(B ® {,})(C ® {v}), 

(12) 

where (v) is a partition of r. It is also useful to note 
that) if (A) is a partition of rand 

{A} ® {Il} = 2 {v}) 

then, if r is even, 
{X} ® {,u} = L {v}, (13) 

and, if r is odd, 
{x} ® {.u} = L {v}, (14) 

where the sign ~ denotes that the conjugate partition 
is taken. 

The following theorem is particularly useful in the 
construction of a plethysm: If 

{A} ® {7T} = 2 {v}, (1 Sa) 
then 

2 r1cvg} = [2 r 11,,{A} ® {Y}] [2 r11';,{Il}]. (ISb) 
c,v I' I' 

If {7T} == {n} has only one part, then Eq. (I5b) reduces 
to 

2 r1{vg} = {A} ® {n - 1}[2 r11'.!{Il}]' (15c) 
~ I' 
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This last equation forms the basis of Littlewood's 
"third method." 5 The right-hand sides of Eqs. (I5b) 
and (l5c) are usually readily expandable; one is left 
only with the task of selecting a suitable set of {v}'s 
to match the left-hand side. 

A theorem due to Ibrahim13 is particularly useful in 
defining the choice of {v} in Littlewood's third method. 
The principal part of a product of two S functions 
{O(} and {P} is defined as {0(1 + PI, 0(2 + P2' O(a + 
P3, + ... ,}. Ibrahim then proves the following: 
The principal part of the products of terms in the 
expansion ({A} ® {w})({,u} ® {1}}), appear as terms in 
the expansion of 

{AI + ,ul' A2 + ,u2, Aa + ,us, ... ,} ® {v}, 

wherever X(w)X(q) = X(v), where (w), (1]), and (v) are 
all partitions of n, and the X's are characters of Snl' 

Three special cases found by Ibrahiml4 are of use here. 

1. The principal parts in the product 

({A} ® {n})({,u} ® {In}) 

are the terms in the expansion of {AI + ,ul' A2 + 
,u2, •.. ,} ® {l n}, where (n) is a partition into one part. 

2. The principal parts in the product 

({A} ® {n})({,u} ® {n}) 

are the terms in the expansion of {AI + {ll, Az + 
,u2," . ,} ® {n}. 

3. The principal parts in the product 

({A} ® {In})({,u} ® {In}) 

are the terms in the expansion of {AI + {ll, A2 + 
,u2, ... ,} ® {n}. 

These three results provide a list of S functions 
which certainly belong to the reduction of the plethysm. 
While this list is not necessarily complete, it usually 
permits an unambiguous selection of the {v}'s of 
Eq. (l5a) to be made. 

Littlewood5 has given two results that are of assist­
ance in establishing further plethysms. If n is an 
integer, then 

{n} ® {2} = {2n} + {2n - 2, 2} + {2n - 4,4} + ... 
(16) 

to (n + 1)/2 or (n + 2)/2 terms, and 

{n} ® {P} = {2n - 1, I} + {2n - 3, 3} + . .. (17) 

to i(n + 1) or in terms. Using these two results, 
together with the conjugation theorems of Eqs. (12) 

18 E. M. Ibrahim, Oxford Quart. J. Math. 3, 50 (1952). 
10 E. M. Ibrahim, Am. Math. Soc. Proc. 7, 199 (1956). 

and (13), it is readily deduced for n odd that 

{In} ® {2} = {21, 12n- 2} + {2B, pn-S} + . .. (18) 

and 
{In} <IS> {P} = {I2n} + {22, J2n-4} 

+ {24, pn-S} + .. " (19) 

both to Hn + 1) terms, while for n even 

{In} ® {2} = {pn} + {22,22n-4} 

+ {24, 12n- 8} + . .. (20) 

to Hn + 2) terms, and 

{In} ® {12} = {2t, J2n-2} + {23, 12n-S} 

+ {20, pn-IO} + . .. (21) 
to in terms. 

Our problem of resolving the Kronecker square of 
a representation r into its symmetric and antisym­
metric product representations amounts to forming 
the plethysms 

[r2] = r ® {2} 

for the symmetric representations and 

{f2} = r ® {P} 

for the antisymmetric representation. 

(22) 

(23) 

Equations (16)-(21) allow many of the Kronecker 
squares of irreducible representations of the general 
linear group to be decomposed into their sy$etric 
and antisymmetric representations immediately. To 
extend these results, it is necessary to make use of 
Eq. (15b), which reduces to 

I rl{vg} = {A} I r 1/l,\{{l}, (24) 
{. v /l 

if {7T} == {2} or {J2} in Eq. (15a). There are two distinct 
choices for the series of S functions {v} both of which 
yield the right-hand side. Ibrahim's three results give 
the distinction between the two sets. 

As an example, consider the case 

{21} ® {2} = I {v}. 

Equation (15) gives 

I r 1,.{n = {21}[I r 1/l(21){,u}] 

= {21}[{J2} + {2}] 

= {41} + 2{32} + 2{3P} + 2{221} + {2P}. 

Applying Ibrahim's theorem with {A} == {I} and 
{,u} == {P}, we find that ({I} ® {2})({J2} ® {2}) has 
principal parts {42} and {3!3}, allowing us to establish 
the complete list of {v}'s by noting that 

{42} -+ {32} + {41}, 

{3I3} -+ {3P} + {2I3}, 

{23} -+ {22I}, 

{321} -+ {221} + {3J1} + {32} 
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TABLE I. Decomposition of the Kronecker squares of irreducible representations of the general linear group. 

{.t} 

{2I} 
{2It} 

to give 

{.t} @ {2} 

{42} + {3IB} + {321} + {23} 

{42t} + {414} + {3I Jl} + {3214} 
+ {24} + {2"t'} 

W} + {422} + {2IP} + {24} 

W} + {4321} + {43P} + {423} + {33I} 
+ {32S1} + {3221"} + {3"2P} + {2·} 

{43 } + W2B} + {43"P} + {424} + {39221'} 
+ {2'} 

{21} @ {2} = {42} + {3IB} + {23} + {32I}. 

Using Eq. (14) and the result for {21} @ {2} immedi­
ately gives 

{21} @ {J2} = {4P} + {32} + {321} + {2212}. 

This result may be checked by noting that 

{A} @ ({2} + {P}) = {AHA}. (25) 

The method just outlined allows the rapid decom­
position of the Kronecker squares of the irreducible 
representations of the general linear group given in 
Table I. If {A} is an irreducible representation of 
GL(m), then all partitions occurring in the decom­
position that have more than m parts will be null. 
Individual decompositions may be checked by noting 
that if the irreducible representation {A} of GL(m) is 
of degree n, then the sum of the dimensions of the 
symmetric representations must be equal to that of 
the representation {2} of GL(n) , i.e., n[!(n + I)] 
while the sum of the antisymmetric representations 
must be equal to that of the representation {12} of 
o'L(n), i.e., n[!(n - 1)]. Since the representations of 
GL(m) remain irreducible under restriction to the 
unitary group U(m) , the entries in Table I may be 
equally well applied to the decomposition of the 
Kronecker squares of the irreducible representations 
of the unitary groups. 

m. PLETHYSMS FOR RESTRICTED GROUPS 

It is well known that when a group is restricted to a 
subgroup, a set of functions which transforms irre­
ducibly under the full group is, in general, reducible 
under the subgroup. Thus, the S functions {A} corre­
sponding to the irreducible representation {A} of 
GL(m) will be reducible under restriction to the 
rotation of symplectic group~. This means that the 
transformation matrix A(,t} for the representation {A} 
can be expressed as a direct sum of ma~rices irreducible 
under the lower group, e.g., 

A{A} = tAr«] 

{.t} @ {is} 

{4P} + {32} + {321} + {2IP} 

{42P} + {3"2} + {321"} + {3P} + {2'P} 

{431} + {32"1} 

WJ2} + {431} + {432I} + {4211'} + {3 i 2S} 
+ {392P} + {321'} + {32s1} + {2'11} 

W31} + {432"1} + {3ap} + {32'1} 

for the rotation group, and 

AW = IA<<<> 
for the symplectic group. 

Following Littlewood,? we denote [rl] and (rl) as 
the spurs of the irreducible matrices A[«] and A[«], 

respectively, i.e., [rl] is an S function for the rotation 
group and (rl) for the symplectic group. Rules for 
performing the decompositions {A} - .2 [rl] and 
{A} -- .2 [rl] have been given by Littlewood.? In many 
cases, the decomposition of a representation {A} of 
GL(n) or U(n) gives rise to nonstal1dard symbols 
containing more parts than allowed for the repre­
sentations of the appropriate subgroup. Methods of 
expressing these nonstandard symbols in terms of 
standard symbols have been discussed by several 
authors.6 ,7,15-17 

Plethysms for the rotation group R(n) may be 
obtained from those established for the unitary group 
U(n) by noting that 

[A] = {A} + .2 (-ly/2rv/l.t{,u}, (26) 

where rV/lA is the coefficient of {it} in the product 
{11 H,u} and the sum is taken over all partitions of p. 
for which the Frobenius notation is6 

(
r + 1, s + 1), 

r , S 

(
r + 1, S + 1, t + 1) .... 

r , S , t 

These partitions appear in the expansion 

1 + .2 (-ly/2{1I} 

= 1 - {2} + {31} - {412} - {32
} + .... 

The plethysm is then given in terms of plethysms for 
U(n) by the expression . 

[A] @ {1]} = [{A} + .2 (-ly/2I'v/l,,{,u}J @ {1]}. (27) 

15 F. D. Murnaghan, The Theory of Group Representations (The 
Johns Hopkins Press, Baltimore, 1938). 

16 B. H. Flowers, Proc. Roy. Soc. (London) A211, 248 (1952). 
11 J. D. Darling and R. O. Seyler, Acta Phys. Acad. Sci. Hung. 

11, 33 (1966). 
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TABLE II. Decomposition of the Kronecker squares of irreducible representations of the general rotation group. 

[A.] 

[IJ 

[21 
[3] 

[4] 

[2l} 

[22] 

[21"J 

[221] 

[A.] ® {Z} 

{Z} 

{4} + {Z2} - {2} 

{6} + {42} + {I'} - {4} - {3J} 
{8} + {62} + {44} + {31} - {6} - {51} - {42} 

{4Z} + {321} + {3J3} + {23} + {I"} - {31} - {Z2} - {21l} 

{44} + {42'} + {3al"} + {31} + {2'} - {42} - {321} - {2"} 

{422} + {414} + {J0I'} + {3213} + {2'} + {2'1'} + {21'} 

- {321} - {3l"} - {23} - {2"1"} - {214} 

{4"2} + {432l} + {4312} + {423} + {412} + {331} + {32ZI"} 

{l2} 

{31} + {OJ - {Z} 
{51} + {3"} + {2} - {4} - {31} 

{71} + {53} + {4} + {Z"} - {6} - {51} - {4Z} 
{4P} + {3a} + {321} + {2°P} + {2} - {31} - {22} - {212} 

{431} + {4} + {3221} + {2"} - {42} - {3Z!} - {Z"} 

{4ZJ2} + {322} + {321"} + {31"} + {2"J"} + {2°} + {I'} 

- {321} - {3P} - {2"} - {2'P} - {214} 

+ {3"} + {3231} + {322J3} + {321} + {2S} + {2ap} - {431} 
- {42"} - {42J2} - {322} - {3221} - {24} - {2"P} 

{42J2} + {43'} + {4321} + {4Z012} + {42} + {3':.!:·} + {3'ZI2} 
+ {3214} + {323l} + {321} + {31"} + {241"} + {Z"} - {431} 
- {422} - {421 2} - {3i2} - {nOI} - {2'} - {2ap} 

[23J {4"} + {422'} + {43212} + {431} + {424} + {3'22J2} 
+ {32"1} - {422} - {4321} - {32212} - {WI} - {25} 

The plethysms for {fJ} == {2} or {J2} may then be 
readily calculated, using the results of Table I together 
with the special forms of Eqs. (7) and (S), 

(A - B) ® {2} = A ® {2} + B ® {12} - AB 

and 

(A - B) ® {12} = A IS> {I2} + B IS> {2} ,- AB, 

and their extensions. For example, 

[21] IS> {2} = H2l} - {I}l ® {2} 

= {21} ® {2} + {I} ® {P} - {21}{1} 

= {42} + {313} + {321} + {23} + {12} 

- {31} - {22} - {2I2}. 

The decomposition of the Kronecker squares of 
irreducible representations of the rotation group into 
their symmetric and antisymmetric parts is given in 
Table II in terms of representations of the correspond­
ing unitary groups. To obtain these decompositions 
for a particular rotation group R(n), we first strike 
out all representations of U(n) that contain more than 
n parts, and then decompose the remaining representa­
tions into those of R(n), as in Table III. 

Plethysms for the rotation and symplectic groups 
can also be found using the rather remarkable theorem 
due to Littlewood,18 which states that if 

! rg;.rgVjlg}{v} = ! K;'jlp{p}, (28a) 

the summation on the left being with respect to all 
possible S functions including {~} = {OJ, then 

[A]LuJ = ! K;'jlp[pJ (2Sb) 
and 

(28c) 

Two special cases1S of direct relevance to the present 
problem may be derived from the above result. If (p) 

,. D. E. Littlewood, Can. I. Math. la, 17 (1958). 

{4231} + {42} + {4J221} + {422} + {38P} + {321'} + {3241} 
+ {2'} - {422} - {4321} - {322t2} - {32SI} - {2"} 

is a partition of 2, then; 

(1) (29a) 

where 

I H).jlv{v} = I (rgq).{fJ}) ® Vt} + I r~'1;.rs,).{'YJ}g}, 
(fJ) ~ ({) (29b) 

summed for all suitable S functions {~}, {fJ}, {n, the 
last term not being repeated for the interchange of 
{fJ} and {n; 

(2) (30a) 

where 

IJ).jlv{v} = I (rS'I .. {fJ}) ® ({tt}· {E}) 

+ ! rgq;.rg{;.{fJH{}, (fJ) ~ m, (30b) 

in which (E) = (2) if {~} is of even weight, but (E) = 
(I2) if {~} is of odd weight. (ta}· {E}) denotes an inner 
product of S functions. 

The above two results do have the advantage of 
yielding the decomposition of the Kronecker square 
directly in terms of the representations appropriate 
to the rotation or symplectic group concerned, rather 
than in terms of representations of the general linear 
group (which must then be reduced.) It is somewhat 
surprising that Eqs. (28a)-(2Sc) have not been applied 
to the general problem of decomposing Kronecker 
products of representations of the rotation and 
symplectic groups more frequently. Examples of 
plethysms for the symplectic groups are given in 
Tables IV and V. 

IV. KRONECKER SQUARES FOR THE GROUP G2 

Judd and Wadzinski3 have considered the resolu­
tion of the irreducible representations contained in 
the decomposition of the Kronecker squares of the 
representations of Ga into their symmetric and anti­
symmetric results. The results they give for the 
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TABLE III. Decomposition of the Kronecker squares of irreducible representations of the rotation group R •. 

[A] 

[0] 

[1] 

[12] 

[2] 

[21] 

[A] @ {2} 

[0] 

[2] + [0] 

[22] + [2] + [1] + [0] 

[4] + [22] + [2] + [0] 

[42] + [40] + [32] + [31] + [30] 

[11] 

[21] + [11] 

[31] + [11J 

[A] @ {12} 

+ 2[22] + [21] + 2[2] + [11] + [1] + [0] 
[41] + [33] + [32] + 2[31] 

+ 2[21] + 2[l1J 

[22] [44] + [42] + [4J + [32J + [3] + [22] + [2] [43] + [41] + [33] + [31] + [21] 

representations (wO) of G2 may be obtained readily 
by noting that the irreducible representations of R7 
that contain only one part are irreducible under 
restriction to G2 ; hence 

(wO) @ {A} = [wOO] @ {A} 

= ({w} - {w - 2}) @ {A}. 

The remaining entries in their Table I may be found 
directly from the plethysms found for the group R7 
by noting that if r a labels the representations of 
a group G, y~ those of a subgroup g, and 
ra ----+ 1" y: under restriction to g, and, if 

ra@{A}=lrb----+ly~, (3Ia) 
b b,p 

where {A} == {2} or {P}, then 

[! y:] @ {A} = 1 (y: @ {A}) + 1 y:y~ 
~ « «<p 

= ! y!. (3Ib) 
b,P 

For example, to evaluate (11) ® {12}, we use Eq. (31a) 
to give 

[110] @ {Ill} = [110] + [211] -- 2(10) + 2(11) 

and then Eq. (31b) to yield 

[(10) + (11)] @ {12} 

+ (20) + (21) + (30). 

= (10) @ {P} + (11) @ {P} + (10) X (11). 

Using the fact that (10) @ {P} = (10) + (11) and 
(10) X (11) = (10) + (20) + (21), we deduce that 
(11) @ {12} = (11) + (30). The other entries of Judd 
and Wadzinski's Table I follow in a similar manner. 

V. KRONECKER SQUARES FOR FINITE GROUPS 

The separation of the Kronecker squares of the 
irreducible representations of a finite group G into 
their symmetric and antisymmetric parts has been dis­
cussed by Hamermesh1 and Griffith. 2 The Kronecker 
squares of the irredicible representations n<J) of the 
three-dimensional rotation group Ra may be readily 

TABLE IV. Decomposition of the Kronecker squares of irreducible representations of the general symplectic group. 

(a) 

(0) 

(I) 

(12) 

(1") 
(14) 

(2\) 
(22) 

(212) 

(2a) 

to} 
{2} 

{2'} + {14} - {I'} 

(a) @ {2} 

{23
} + {W} + {F} - {2P} - {14} 

{24} + {2aI4} + {2P} + {is} - {2"1"} - {214} - {is} 

{42} + {321} + {31"} + {23} + {12} - {31} - {22} - {21'} 

{42} + {42'} + {32P} + {2'} + {21'} - {3S
} - {321} 

- {2"IS} 

{422} + {414} + {321"} + {321"} + 2{31} + {24} + {221'} 
+ 3{2I"} + to} - {41"} - 2{321} - 2{313} - {23} - 2{2sl'} 
- {W} - {2} - {I"} 

{422} + {4321} + {431"} + {423} + {41"} + {3al} + {3'212} 
+ {3'} + {32al} + {32S18} + 3{321} + {3IB} + {25} + {23} 
+ 3{2"1'} + {214} + {2} + {I"} - {431} - {422} - {4212} 
- 2{3'2} - {3"1'} - 3{322 I } - {3218} - {31} - {24} 
- 2{231'} - {2"14} - {212} _ {14} 

{48} + {4"22} + {43'1"} + {424} + {421'} + {312'!'} 
+ 2{3"2} + {3221} + {32Ia} + {3JS} + {2"} + 2{2al'} + {2a} 
+ {22} + {14} + {l"} + to} - {432} - {431'} - {422l} 
- {42la} - {3a} - {312l} - {32"1'} - {321} - {3IS} 
- {241} - {2sla} - {2a} - {2"11} - {214} - {21'} 

(a) @ {P} 

{I'} 

{21'} + to} - {P} 

{2'P} + {2} + {I"} - {21'} - {14} 

{23P} + {2'} + {21"} + {14} - {2'P} - {W} - {I"} 

{4P} + {31} + {321} + {221'} + {2} - {31} - {22} - {21"} 

{431} + {32"I} + {22} + {14} - {3'} - {321} - {2'P} 

{42P} + {4} + {312} + {32Ia} + {31 5} + {3l} + {2ap} 
+ 2{22} + 2{2l'} + {14} - 2{321} - 2{31"} - {28} - {22P} 
- {214} - {2} - {I'} 

{421'} + {43'} + {4321} + {42'1"} + {42} + {3'22} + {3221'} 
+ {3114} + {WI} + 3{321} + 2{318} + {24Ia} + 3{2a} + 2{2'P} 
+ {W} + {I'} - {431} - {422} - {42P} - 2{3a2} - {321'} 
- 3{3221} - {3213} - {31} - {24} - 2{23P} - {2214} - {21} 
- 2{21"} - {14} 

{4'31} + {432"1} + {42'} + {414} + {38P} + {3a2} + {32P} 
+ {3241} + {32"I} + {321"} + {24} + {2ap} + {21} + {2114} 
+ {Ia} - {432} - {4312} - {4221} - {421"} - {3a} - {3221} 
- {3221'} - {321} - {3J8} - {241} - {2al"} - {2a} - {2"P} 
-{W} 
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TABLE V. Decomposition of the Kronecker squares of the 
irreducible representations of the symplectic group Spa. 

(a) (a) ® {2} (a) ® {IS} 

(0) (0) 

(1) (2) (I") + (0) 

(12) (22) + (14) + (1') + (0) (21') + (2) 

(1 8 ) (28 ) + (21") + (2) (2"11) + (2") + (I") + (O) 

(14) (24) + (22) + (0) (23 ) + (2) 

decomposed into their symmetric and antisymmetric 
parts by first noting that for integral J 

[V(J)] = V(J) ® {2} = 0,2, ... ,2J 
and 

{v(J)} = V(J) ® {12} = 1,3, ... ,2J - 1, 

while for half integer J, 

[V(J)] = V(J) ® {2} = 1,3, ... ,2J, 

{V(J)} = V(J) ® {12} = 0,2, ... , 2J - 1, 

and then decomposing the irreducible representations 
D(J) into those of the finite group G, followed by use 
of Eqs. (31a) and (31b). 

For example, in the case of the icosahedral group 
K, we have D(l) --+ Tl . 

D(1) ® {2} = D<O) + D(2) --+ A + V, 
and 

giving 

Tl ® {2} = A + V and Tl ® {I2} = T1 • 

The other Kronecker squares for the icosahedral group 
may be evaluated in a similar manner to give the 
results of Table VI. Similar results may be readily 
obtained for any other finite group that is a subgroup 
of Ra. 

VI. SELECTION RULES AND PLETHYSM 

Judd and Wadzinski3 have considered the applica­
tion of the resolution of the Kronecker squares of 
irreducible representations into their symmetric and 
antisymmetric parts to the determination of selection 
rules. Let us consider an operator /(r.r2) that trans­
forms as the r 2 representation of a group G and as 
the Ya representation of a subgroup g of G. The 
matrix element 

< 1p(rIY1), j(r2Ya) cp (r2Ya» 

will certainly vanish, unless either 

ra ® {2} :;, r 1 and Ya ® {2} :;, Yl 

TABLE VI. Decomposition of the Kronecker squares of the 
irreducible representations of the icosahedral group K. 

r r ® {2} r ® {il} 

A A 
TI A+V TI 
V A +2V+ U TI + T. + U 
Ts A+V T. 
U A + V+ U TI + Ta 

E' TI A 
E* Ta A 
U' T1 + T. + U A+V 
W' 2TI + 2T2 + U + V A + 2V + U 

or 

These dual conditions make use of the fact that func­
tions that transform as r 1 under G must be of the 
same symmetry classification as those spanning the 
Yl representation of the subgroup g. 

As an example, consider the isoscalar factor 

< [22]L I [20]k + [20]k) , 

where [22] and [20] are irreducible representations of 
R5 and Land k are the irreducible representations 
D[L] and D[k] of Ra. We have 

[20] ® {2} :;, [22] and [k] ® {2} :;, 0,2, ... ,2k. 

Hence, we conclude that the isoscalar factor must 
vanish for odd values of L. 

Similar applications to finite groups are possible, 
some of which have been discussed by Hamermesh1 

and Griffith. 2 

VII. CONCLUSION 

In the preceding, we have attempted to indicate 
some of the applications of Littlewood's technique of 
plethysm to the resolution of the Kronecker squares 
of irreducible representations into their symmetric 
and antisymmetric parts. Plethysm plays an important 
part in physics wherever the theory of groups enters. 
Two typical problems, where plethysm introduces 
remarkable simplifications, are the group theoretical 
analysis of the n-particle operators that may be con­
structed from a basic set of single-particle operators 
and the general problem of the classification of states 
of n-particle systems. Examples of these two applica­
tions will be considered in a later paper. 
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Exact re1ati~nships are de~eloped.w~ich describe the occupation statistics for one-dimensional arrays of 
dum?bells: It IS shown that m the limit, as the number of compartments per array tends to infinity, these 
rel~tIonshlps reduce to t~?se calcu~ated, u~ing. the Bethe approximation when the number of nearest 
~elghbo~ IS two. ~ part~tlOn functIOn, which mcludes the influence of the configurational correlation 
mherent m a one-dimenSional array of dumbbells, is also derived and discussed. 

I. INTRODUCTION . 
THERE exists in the literature a large number of 

papersl - 6 concerned with the statistical analysis of 
one-dimensional systems. The rationale for treating 
such systems is that it is often possible to perform a 
relatively thorough investigation of their statistical­
mechanical properties, and knowledge thus gained 
may be of value when considering systems of higher 
dimensionality. 

In the present paper we investigate the occupation 
statistics of particles which occupy two adjacent 
compartments in a linear array of compartments. In 
such systems there is configurational correlation in the 
sense that if a compartment is occupied then at least 
one of its nearest neighbors is also occupied. Thus, 
there does not exist a random distribution of occupied 
compartments but rather a random distribution of 
pairs of occupied compartments. 

Utilizing the Bethe approximation7 and methods 
developed by Peierls8 and Fowler,9.1o Roberts and 
Millerll •12 have treated the statistical problem of 
dumbbells in connection with the adsorption of 
diatomic molecules. Within the limits imposed by the 
Bethe approximation, they were able to determine 
(1) the probability that a vacant compartment i~ 

isolated, (2) the probability that if a compartment is 
occupied a given nearest neighbor is occupied by part 
of another dumbbell, and (3) the probability of success 
in placing an additional dumbbell on a linear array of 
N compartments containing q dumbbells. The present 

1 E. Ising, Z. Physik 31, 253 (1925). 
• A. Lenard, J. Math. Phys. 2, 682 (1961). 
8 M. Kac, Phys. Fluids 2, 8 (1959). 
, S. F. Edwards and A. Lenard, J. Math. Phys. 3, 778 (1962). 
5 J. M. J. Van Leeuwen, J. Chern. Phys. 41, 2959 (1964). 
• I. P. Pavlotski, Doki. Akad. Nauk SSSR 161, lOSS (1965) 

[English trans!.: Soviet Phys.-Doklady 10, 301 (1965)]. 
1 H. A. Bethe, Proc. Roy. Soc. (Lond~n) AlSO, 59 (1935). 
8 R. Peierls, Proc. Cambridge Phil. Soc. 32, 471 (1936). 
t R. H. Fowler, Proc. Cambridge Phil. Soc. 31, 260 (1935). 

10 R. H. Fowler, Proc. Cambridge Phi!. Soc. 32, 144 (1936). 
11 J. K. Roberts, Proc. Roy. Soc. (London) A161, 141 (1937). 
11 J. K. Roberts and A. R. Miller, Proc. Cambridge Phil. Soc. 

35, 293 (1939). 

paper is an attempt to calculate these quantities without 
recourse to the Bethe approximation and to determine 
the exact statistics which can be used to describe 
linear arrays of dumbbells. Gornick and Jackson13 

have treated the mathematically related problem of 
the sequence selection in the crystallization of linear 
polymer chains. 

II. THE NUMBER OF WAYS OF PLACING 
q DUMBBELLS ON A LINEAR ARRAY 

OF N COMPARTMENTS 

The statistical system to be investigated here has 
the following character: (a) A linear array of N 
identical compartments; (b) indistinguishable particles 
(dumbbells) which occupy contiguous pairs of com­
partments; (c) the occupancy of each compartment 
is either 0 or 1. 

The first quantity which must be determined is 
W(q, N), the number of ways in which q indistinguish­
able dumbbells can be arranged on a linear array of 
N compartments. If the number of dumbbells on a 
linear array of N compartments is q, then there are 
(N - 2q) vacant compartments and (N - 2q) + q = 
N - q individual "things" to be permuted of which q 
are of one kind and N - 2q of another. Thus, W(q, N) 
is given by 

W(q, N) = (N - q)! = (N - q). (1) 
q!(N-2q)! q 

In Fig. lea) we see, for example, that there are 20 
distinguishable ways of arranging 3 dumbbells on a 
linear array of9 compartments. For large values of N, 
W(q, N) becomes 

~( N) - 2N-Q [ 2 ] [(N - 3q)2] 
q, - [1T(N-q)]! exp - 2(N _ q) 

(2) 

which is maximized for a given value of N at q = N/3. 

18 F. Gornick and J. L. Jackson, J. Chern. Phys. 38, 1150 (1963). 
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FIG. I. (a) The number of distinguishable arrangements when 3 
dumbbells are placed on a linear array of 9 compartments. (b) 
Total number of double vacancies (p = 2) when 3 dumbbells are 
placed on a linear array of 9 compartments in all distinguishable 
arrangements. 

m. THE NUMBER OF p-TUPLE 
CONTIGUOUS VACANCIES 

We must also determine Np(q, N), the number of 
p-tuple contiguous vacant compartments created 
when q dumbbells are placed on a linear array of N 
compartments in all possible arrangements. If we 
consider the p-contiguous vacant compartments 
which make up the p-tuple vacancy plus the dumbbell 
which terminates it at one end as a unit, then there 
are a total of (N - q - p - 1) individuals remaining 
which can be permuted. Of these, (q - 1) are dumb­
bells because one of the dumbbells serves to terminate 
the p-tuple vacancy and N - 2q - P are vacant 
compartments. Each of the arrangements arising from 
the permutation of (N - q - p - 1) individuals may 
be created in (q - 1) + 2 = (q + 1) ways because the 
p-tuple vacancy may be interspersed between the q 
dumbbells in q - 1 ways and also on each end of the 
array [see Fig. l(b)] so that 

Np(q, N) = (q + 1)(N - q - p - I)! 
(q - I)! (N - 2q - p)! 

= (q + 1) (N - q - p - 1). (3) 
q-l 

Thus P1(q, N), the probability that a compartment is 

vacant and isolated is given by 

P (q N) = NI(q, N) 
1, NW(q, N)' 

(4) 

where Nl is obtained from Eq. (3) when p = 1; then 

PI(q, N) = q(q + 1)(N - 2q) (5) 
N(N - q)(N - q - 1) 

If we define () == 2q J N and let N tend to infinity, we 
obtain 2 

PI «() = lim PI(q, N) = (1 - ()(_O_) (6) 
N-+OO 2 - () 

which is precisely the result obtained when the Bethe 
approximationl2 is utilized in this problem. Figure 2 
shows PI as a function of (). PI max is 1':::10.0925 and 
occurs at ()max = 3 - 5f ~ 0.766. 

The probability of success, S(q, N), when attempting 
to place in a random manner an additional dumbbell 
on a linear array of N compartments containing q 
dumbbells is given by 

S( N) - N 2v(q, N) (7) 
q, - (N - l)W(q, N)' 

where N 2v(q, N) is the number of different ways in 
which one additional dumbbell may be placed on all 
the distinguishable arrangements created when pre­
viously q dumbbells are placed on a linear array of N 
compartments in all possible ways. The factor (N - 1) 
arises because there are (N - 1) possible places for a 
dumbbell on a linear array of N compartments. Since 
each p-tuple vacancy can accommodate (p - 1) 
dumbbells, N2,,(q, N) is given by 

N-2a 

N2v(q, N) = ! (p - l)Niq, N) 
p=l 

= (N - q - I)!, (8) 
q! (N - 2q - 2)! 

so that Seq, N) becomes 

Seq, N) = (N - 2q)(N - 2q - 1) . (9) 
(N - q)(N - 1) 

In the limit, as N tends to infinity, Eq. (9) may be 
written 

. 2(1 - ()2 
S«() = hm Seq, N) = , 

N->oo (2 - () 
(10) 

where () == 2qJN. 
Again this result is precisely that given by the Bethe 

approximation. 12 

IV. THE NUMBER OF CONTIGUOUS 
DUMBBELLS 

The number of runs of r contiguous dumbbells, 
Nr(q, N), may be determined in the following manner. 
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FIG. 2. P" the probability that a site is isolated and vacant 

as a function of coverage. 

If we consider the run of r contiguous dumbbells and 
the vacancy that terminates the run as a unit, then 
there are (N - q - r - 1) individuals remaining. 
Of these, (q - r) are dumbbells and (N - 2q - 1) are 
vacancies. Each of the arrangements arising from the 
permutation of (N - q - r - 1) individuals may be 
created in (N - 2q + 1) ways. Thus, 

(N - 2q + 1)(N - q - r - 1)! 
N l q, N) = '-----=-----'-'-----=----'-

(N - 2q - I)! (q - r)! 

=(N_2q +l)(N-q-r-l). (11) 
q-r 

If a compartment is occupied, P n<q, N), the probability 
that a nearest neighbor is occupied by part of another 
dumbbell is given by 

1 q 

P n(q, N) = 2 (r - 1)Nr(q, N), (12) 
NW(q, N)r~l 

because each run of r dumbbells contains (r - 1) 
pairs of nearest-neighbor compartments which are 
occupied by part of other dumbbells. Equation (12) 
yields 

P ( N) = q(q - 1) • 
n q, N(N _ q) (13) 

In the limit, as N tends to infinity we obtain 

. (0)2 
Pnco) = hm Pn(q, N) = , 

N-+oo 2(2 - 0) 
(14) 

which again is the result obtained utilizing the Bethe 
approximation.12 

V. DISTRIBUTION FUNCTION WITH 
CONFIGURATIONAL CORRELATION 

Theoretical treatments of superconductivity, the 
statistics of electrons in semiconductors, cooperative 
phenomena, etc., involve the consideration of several 

types of correlation. If the nature of the correlation is 
such that the occupation of a cell in phase space 
precludes the occupation of a nearest-neighbor cell, 
or if the cells are always occupied in adjacent pairs, 
then there exists configurational correlation of the 
kind discussed in the present paper. Therefore, even 
for a one-dimensional space, it is interesting to 
examine the influence of configurational correlation 
on the form of the distribution function. 

If W;, the number of ways of arranging q; dumb­
bells on the jth cell composed of a linear array of N 
compartments is given by [see Eq. (1)] 

(N - q;)! 
W· = --''----=-:.:...-

3 q;! (N - 2q;)! 
(15) 

then the probability of a given macrostate in these 
dumbbell statistics is 

W=ITW;=IT (N-q;)! , (16) 
, ; (q;)! (N - 2qj)! 

where q; is the number of dumbbells on the jth array 
of N compartments. As in any type of statistics, we 
assume that the entropy is proportional to the 
logarithm of the thermodynamic probability and that 
In W is a maximum at the equilibrium state of maxi­
mum entropy. To determine the maximum value of 
In W, we proceed in the following manner. The 
logarithm of Eq. (16) yields 

In W = 1: {In (N - q;)! - In (q;)! - In (N - 2qj)!}. 
j 

Using the Stirling approximation yields 

In W = 2 {(N - q;) In (N - q;) - q, In q; , 

(17) 

- (N - 2q;) In (N - 2q;)}. (18) 

If W m represents the maximum probability and at 
this condition qjm is the corresponding number of 
dumbbells in the jth array, then 

bin W = ~ In [ (N - 2q;m)2 ]bq j 
= O. (19) 

3 q,m(N - q;m) 

If the number of particles and system energy are 
constant, then 

b U = 1: E ,bq, = 0. 
i 

Adding Eqs. (19)-(21) yields 

(20) 

(21) 

2 {In [ (N - 2qim)2 ] - In B - (3E i }bq i = 0, (22) 
j q;m(N - qim) 

where In Band {3 are the undetermined multipliers 
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FIG. 3. PI' the probability that a level of energy E; is occu­
pied as a function of E for various temperatures. 

and where qim is the number of dumbbells in the jth 
array when W is a maximum. Equation (22) yields 

(N 2 )2 
- qjm = B exp LBE

i
]. (23) 

qjm(N - qjm) 
Thus, 

2qjm = 1 ± [1 + ....!..exp (- Ei)J-t, (24) 
N 4B kT 

where, as usual, {J is determined to be 1/kTby the fact 
that in a constant volume process 

dU= Tds. (25) 

Thus from Eq. (24), we see that Pi' the relative 

occupation of the jth array is given by 

Pj = 1 - {1 + exp [(ED - Ej)/kT]}-l, (26) 

where ED == -kTln 4B and the minus sign is chosen 
because P j ::::;; 1. At T = 0, this distribution function 
has the Fermi-like character shown in Fig. 3. Thus, if 
Ei < ED' the partition function is unity. If Ei > ED' 
the value of the partition function is zero. This 
distribution function also exhibits behavior similar to 
classical statistics when (ED - Ej)/kT« 0, i.e., 

Pi -:::' ! exp [(ED - Ej)/kT]. (27) 

VI. CONCLUSION 

It is shown that an exact treatment of the occupation 
statistics of dumbbells on a linear array of N com­
partments leads, in the limit as N tends to infinity, 
to the same results obtained when the Bethe approxi­
mation is used. 

A partition function is derived on the basis of an 
exact treatment of the occupation statistics of linear 
arrays of dumbbells. 
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This paper treats the problem of radiation from sources of arbitrary time dependence in a moving 
conducting medium. The medium is assumed to be homogeneous and isotropic, with permittivity E, 

permeability p, and conductivity fI, and to move with constant velocity v with respect to a given inertial 
reference frame. v may have any value up to the speed of light. It is shown how the Maxwell-Minkowski 
equations for the electromagnetic fields in the moving medium can be integrated by means of a pair of 
vector and scalar potential functions analogous to those commonly used with stationary media. The 
waye equation associated with these potential functions is derived, and an associated scalar Green's 
function is defined. The solution for the Green's function is obtained in closed form, by means of a 
technique making use of the relation between the fundamental solution of a radiation problem and that of 
a corresponding Cauchy initial-value problem. The resulting Green's function is found to consist of an 
oblate spheroidal shell, similar to that which occurs in a lossless medium, plus a residue which persists 
after the shell. In addition, the Green's function is exponentially damped in both space and time, an 
effect not present in a Iossless medium. 

I. INTRODUCTION 

ALTHOUGH Minkowski's theory of the electro-
1""\. dynamics of moving media1•2 was first introduced 
in 1908, it was not until recently that workers have 
begun to make much use of Minkowski's results to 
solve electromagnetic boundary value problems. 
Thus, for example, the problem of Cerenkov radiation 
from a uniformly moving point charge is usually 
treated as a moving charge in a stationary medium,s 
although the same problem viewed as a stationary 
charge in a moving medium is mathematically simpler. 
being an electrostatics problem in Minkowski's 
theory.4-6 In a series of recent articles,7-I1 Tai has 
related Minkowski's results to other formulations of 
this subject, and also a number of papers on various 
specialized problems involving moving media have 
appeared. 10-22 

.. This work was supported by the U.S. Air Force Cambridge 
Research Laboratories, Office of Aerospace Research, under 
contract AFI9(628)1699. 

t This paper is based on part on. M. Besieris' Ph.D. dissertation 
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t Present address: Bell Telephone Laboratories, Inc., Whippany, 
New Jersey. 
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In two earlier papers,23.24 the present authors deter­
mined the time-dependent Green's function for a 
moving lossless medium of arbitrary velocity up to c, 
the speed of light, and for a slowly moving (v« c) 
conducting medium. (The propagation of plane waves 
in a slowly moving lossy medium has also previously 
been discussed by Collier and Tai. 25) The present 
paper discusses the time-dependent Green's function 
for a moving conducting medium where the velocity 
of the medium may have any value up to c. The medium 
is assumed to be homogeneous and isotropic, to be of 
infinite extent in all directions, and to be moving 
with a uniform velocity v with respect to a given 
inertial reference frame. The electrical properties of 
the medium are characterized by a permittivity E, a 
permeability p., and a conductivity (1, which are 
constant at all frequencies. (E, p., and (1 are measured 
in a reference frame attached to the medium.) 

n. THE MAXWELL-MINKOWSKI EQUATIONS 
FOR A CONDUCTING MEDIUM 
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rest with respect to a homogeneous, nondispersive, 
time-invariant, isotropic, conducting linear medium 
of infinite extent which moves with a uniform velocity 
v relative to the laboratory system K. 

Although no change whatsoever is required in the 
well-known laws of stationary electrodynamics for 
an observer "riding" with the medium, a radically 
new formulation is necessary in the case of an observer 
at rest in the laboratory system. In this coordinate 
frame the electromagnetic fields must satisfy Max­
well's equations 

V x E = -aB/at, (Ia) 

V x H = aD/at + J! + J, (lb) 

V· D = PI + P, (I c) 

V· B = 0, (Id) 

where .E, H are respectively the electric and magnetic 
field intensities; D, B the electric and magnetic dis­
placements; P" J, the free charge and current densities 
and, finally, p, J the externally applied charge and 
current densities, all referred to the mks system of 
units. 

Since all the fundamental laws of physics are 
covariant in the light of the theory of special relativity, 
Maxwell's equations must have the same form in all 
inertial frames of reference. This set of equations in 
the K' frame is not closed and, therefore, does not 
permit a solution; consequently it must be supple­
mented by auxiliary relations between the electric 
displacement, the magnetic displacement, the free­
current density, and the electric and magnetic field 
intensities. It will be assumed that the following 
constitutive relations are specified in K': 

Dr = e'E', (2a) 

B' = ,u'H', (2b) 

J' 'E' f = a , (2c) 

where e', ,u', and a' are the permittivity, the permea­
bility and the conductivity, respectively. All these 
quantities are taken to be independent of the space 
coordinates and time. In other words, the medium 
under investigation is considered to be homogeneous 
and stationary.26 In addition, it is specified that the 
medium is neither spatially nor temporally dispersive. 

The approach enunciated by Minkowski in 1908 was 
to assume that the properties of the medium, which 
are expressed in terms of the constitutive relations in 
K', are known. The transformations of the theory of 

2. The stationarity of the medium pertains to the time in variance 
of its characteristic properties (permittivity, permeability, etc.) and 
should not be confused with the motion of the material. 

special relativity are then applied to obtain relations 
which are valid in the laboratory system relative to 
which the material is moving with uniform, but other­
wise arbitrary, velocity. 

According to Minkowski's theory, Eqs. (2a)-(2c) 
are sufficient to determine the constitutive expressions 
for the unprimed field quantities if the Lorentz 
relativistic transformations are known. If it is assumed 
that the coordinate frames K and K' are coincident at 
t = I', have the same orientation, and move with a 
uniform velocity v = va. with respect to each other, 
the following formulas link the primed and unprimed 
field quantities27 : 

where 

E' = ji • (E + v • B), 

B' = ji. (B - c-2v • E), 

D' = ji • (D + c-2ij • H), 

H' = ji. (H - V· D), 

y = (I -/J2)-i, {J = vIc. 

(3a) 

(3b) 

(3c) 

(3d) 

The anti symmetric tensor v is defined in such a way 
that v • F = v x F for an arbitrary vector F. 

In addition to the relativistic transformations of 
the field intensities given above, the transformation 
laws of the 4-vector (J~, icp~) assume the following 
form: 

J; = yji-l. (J j - p,v), 

p~ = yep, - c-2v. J f )· 

(3e) 

(3f) 

Even if p~ = 0 in the rest frame of the medium, so that 
J; is a pure conduction current in this system, the 
charge density PI in K will be different from zero, 
which means that a convection current is present. 

In the ensuing discussion, it is assumed that 
p;-the free-charge-density distribution as measured 
by an observer moving with the material medium in 
the same direction and the same speed-is very small 
so that it can be neglected. In view of the brevity of the 
relaxation time, this does not constitute an essentially 
serious restriction.28- 3o If this condition is borne in 

., For convenience, the velocity of the medium is taken to be in 
the z direction, i.e., v = va,. This condition does not detract from 
the generality of the problem since a coordinate transformation of 
the final solution can be used to treat the more general case. 

2S A self-consistent scheme for characterizing charges and currents 
by sources and response terms, which does not require the simplified 
assumption that the free charge is zero in the K' frame, is being 
presently investigated by Tai et at. (cf. Refs. 29 and 30). 

2. C. T. Tai, V. P. Pyati, and R. M. Kalafus, Radiation Labora­
tory, University of Michigan, Report 7322-I-F (1966). 

30 R. M. Kalafus and C. T. Tai, Union Radioscientifique Interna­
tionale Fall Meeting, Pt. 6, 96 (1966). 
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mind, by substituting Eqs. (3a)-(3f) into Eqs. (2a)­
(2c) one obtains the constitutive relations 

D = E'fi.· E + n x H, (4a) 

B = -n x E + ,u'fi..H, (4b) 

J! = Y • E + J. H, (4c) 

P, = c-2v· J" (4d) 

where the following definitions have been used: 

fi. = ait + a,a., a = (1 - (J2)/(1 - n2{J2), 

n = (fl,'E'/,uOEO)!' n = [{J{n2 - 1)/c(1 - n2{J2)]a., 

y = a'yfi., i:J = a'y,u'av.31 

Substituting Eqs. (4a)-(4d) into the initial set of 
Maxwell's equations in K frame, one obtains a 
definite form of the Maxwell-Minkowski equations 
which may be written in the following convenient 
fashion: 

Do x E = -(%t),u'fi.. H, (5a) 

Do x H = (%t)E'fi. • E + a'yfi. • E 

+ (l/a)5 x (fi.. H) + J, (5b) 

Do' (E'fi.. E) = E'5· fi.. E + P + n· J, (5c) 

Do' (fl,'fi. • H) = 0. (5d) 

Do stands for the differential operator V - n(%t), 
and 5 = a'y,u'av. 

m. SCALAR AND VECTOR POTENTIAL 
EQUATIONS 

It will be shown in this section that the electro­
magnetic field intensities satisfying the Maxwell­
Minkowski set are expressible in terms of appro­
priately defined scalar and vector potentials, in a 
manner analogous to that followed in stationary 
electromagnetic theory. The introduction of the 
potential functions is made possible by a generalization 
of the Helmholz theorem. The partial differential 
equations arising from this procedure are of the 
second order with respect to time, and are initially 
"coupled" in the sense that they contain both the 
scalar and vector potentials. The final conversion to 
the "uncoupled" scalar and vector inhomogeneous 
equations is achieved by means of a gauge trans­
formation. 

A vector potential A may be defined so that 

,u' fi. • H = Do x A. (6) 

This follows from Eq. (5d) in view of the identities 

Do' Do x F = 0, 

Do x Do<P, 

(7a) 

(7b) 

31 The notational definitions here have been chosen to conform 
with already existing ones (cf. Refs. 8 and 13). 

which hold for all twice-differentiable scalar and 
vector functions <D and F, and permit, in turn, the 
formulation of a generalized Helmholz theorem. 
Equations (5a) and (6) suggest that 

E = -oA/ot - Do'¥, (8) 

where'¥ is a suitably chosen scalar potential function. 
These expressions for E and H in terms of the scalar 

and vector potential functions are introduced first 
into the second equation of the Maxwell-Minkowski 
set to obtain 

Do x [fi.-I • (Do x A)] = -E',u'fi.' (o2A/ot 2) 

- E',u'fi.. (%t)Do'¥ 

-,u'a'yfi.. (%t)A - ,u'a'yfi.. Do'¥ (9) 

+ (1/a)5 x (Do x A) + ,u'J. 

A new vector function Ao and a new differential 
operator Da are defined as follows: 

Ao = fi. . A, Da = (l/a)fi. • Do. (10) 

If these definitions are taken into consideration, the 
following equation holds identicallyl3: 

Do x [fi.-I • (Do X fi.-I • Ao)] 

= (l/a)[Da(Do • Ao) - (Da • Do)Ao]· (11) 

The validity of this identity can be checked by writing 
out both sides in a Cartesian coordinate system. By 
an extension of a standard vector identity, since 5 is 
a constant vector, it is seen that 

5 x (Do x A) = Do(5. A) - (5. Do)A - (A. Do)5 

- A x (Do x 5) (12) 

= Do(5 • A) - (5 • Do)A. 

Upon substituting Eqs. (10)-(13) into Eq. (9) one has 

(Da • Do)Ao - ,u' E' a(02Ao/ot2) - ,u' a'ya(oA%t) 

- (5. Da)Ao 

= Da[Do' Ao + E',u'a2(o'¥/ot) + ,u'a'ya2,¥ 

- 5· Ao] - ,u'aJ. (13) 

In a similar manner it can be shown that (5c) and (8) 
imply the following equation: 

\U c: lTP 1 0 "oAo (Do' D ) T - (0 • D ) T + - - Do • Ao - .u a yv· -
a a a ot at 

= _ P + n . J (14) 
aE' 

Thus, the Maxwell-Minkowski equations have 
been reduced to the two partial differential equations 
given in (13) and (14). However, they are coupled. 
The uncoupling, as in the conventional case, can be 
accomplished by investigating the arbitrariness in 
defining the potentials. Making use of this freedom, a 
set of potentials '¥ and Ao will be selected so that they 
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satisfy the "extended" Lorentz condition 

Do' Ao + (/p/a'I'(iJ,¥/iJt) + p,'a'ya2'¥ 

- 8· Ao = O. (I 5) 

It should be stressed here that the modified Lorentz 
condition is not an arbitrary, subsidiary condition. 
On the contrary, besides effecting the desired un­
coupling, it introduces complete symmetry between 
the scalar and vector potentials, i.e., it makes both 
of them satisfy the same inhomogeneous differential 
equation. More specifically, 

[Da • Do - €'p,'a(02/ot2) -p,'a'ay(%t) 
- 8 . Da]'Y = -(p + n . J)la€', (16) 

[Da • Do - €'p,'a(02jiJ2) - p,'a'ay«(}!ot) - 8· Dal Ao 
= -p,'aJ. 

To solve for these potentials, we define the time­
dependent Green's function G(r, Ilr', I') as the 
solution of the equation 

[ Da • Do - €'p,'a (): - p,'a'ay~ - 8'Da]G(r,t/r/,t') at at 
;::: b(r - r')6(t - t') (17) 

subject to the causality condition, viz., G(r, tlr', I') 
satisfies Eq. (17) for I;;::: [' but vanishes identically for 
t < t', The electromagnetic potentials are given in 
terms of the Green's function by integral expressions 
over the source distributions. 

IV. THE EXPLICIT SOLUTION FOR THE 
TIME-DEPENDENT GREEN'S FUNCTION 

Instead of using a combination of fourfold space­
time Fourier transformation and residue theory to 
determine the time-dependent Green's function satis­
fying Eq. (17), use will be made of the relation between 
the fundamental solution of a radiation problem and 
that of a corresponding Cauchy initial-value problem. 
This alternative technique has been discussed in 
detail and exemplified in Ref. (24). 

Consider the Cauchy initial-value problem 

[
V; +~~ _ 2~~ _ (ff/p,' _ Q2)~ 

a (}Z2 a iJzot a ot2 

+ (vQ - ya)p,'a' ~ - p,'a'v i]'F(r, t) = 0, at oz 

'Y(r, t)lt=tt = 0, 

(%t)'Y(r, t)lt=t' = g(r, t'), 

Its solution can be simplified by the substitution 

(lSa) 

(I8b) 

(18c) 

<P(r, t) = 'Y(r, t) exp (pz + qt). (19) 

With the scalars p. q appropriately specified, the 

initial-value problem reduces to the "semicanonical" 
form32•33 

[ 

2 1 02 Q 02 

V +---2-­
t a OZ2 ex ozot 

- (€'p,'a - ~)::2 + 12]<P(r, t) = 0. 

The correct choice for p and q is 

p = -(a l j2€')(p,/€'va - yQ), q = a' yl2€' 

for which 

(20a) 

[2 = -p2/a + q2(€'p,'a - Q2/a) + 2pq(Q/a). 

The initial conditions must be modified as follows: 

<P(r, t)!t=t' = 0, (20b) 

(%t)<P(r, t)lt=t' = g(r, t') exp (pz + qt') == h(r, t'). 
(20c) 

We shall next convert Eq. (20a) into a system of 
two partial differential equations of the first order 
with respect to time. Towards this goal we define 

. [Ul] Ul = <P, U2 = O<P/ot, u = U2 • (21) 

We then write 

(%t)u(r, t) = 'lJu(r, t) (22) 
where 

'lJ = [iC1(V; + tr1002/OZ2) + J(-1J2 - "-1(2Q~trl010z] 
/( = (1£' p,' a - !l2trl). 

Operating next with a threefold spatial Fourier 
transform, we find the relation 

(o!ot)u(s, t) = 'lJ(s)u(s, t) (23) 
in which 

'lJ(s) = [0 1] 
,,-I( -s~ - s;/a) + K-11']' -K-1(2Q/a)isz ' 

s; = s; + s!. 

The solution to Eq. (22) is now given by3' 

u(r, t) = f 9\'(r, tlr', t')Uo(r', t') dr', (24) ___ JEa 
a. This second-order partial differential equation would be in the 

"canonical" form if the term involving the mixed derivatives with 
respect to z and t were absent (cr. Ref. 33). 

a. R. Courant and D. Hilbert, Methods of Mathematical Physics 
([nterscience Publishers, New York, 1962), Vol. II, pp. 180-184. 

3. The integration here extends over a three-dimensional Euclidean 
space containing the, pace coordinates. 
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where uo(r, t') is the value of u(r, t) at t = t', and the 
matrix function m'(r, tfr', t'), the Riemann matrix, 
is given by 

m'(r, tjr', t') = ~ ( exp [i(r - r').~] 
(27T) JEo 

X ±eAk[il \l5(s)(t - t') - A;~] ds. (25) 
k=1 ;*k Ak - Ai 

The solution of the characteristic equation 

Det ['-13(s)t - ~] = 0 (26) 

yields the two eigenvalues 

1.1,2 = (-wo ± Wl)t, (27) 
where 

Wo = I(-\o.ja)s., 

WI = I(-l[s; + (l ja + 1(-lo.2ja2)s~ - [2)1. 

By virtue of the definitions in Eq. (21) and the specified 
initial conditions [cf. Eqs. (20b) and (20c)], we need 
only investigate the (12) entry of m', viz., 

(m')12 = (2~)3 fE. eiS
•

R 

X [e-i(OlalU2szT sin UT(S~ + s;lb
2 

- /2)!] ds. 
u(s~ + s~/b2 _ [2)1 

(28) 

The following abbreviations have been used: 

R=r-r', T:::t-t', u=I(-I, 

Let sand R be subjected to the following linear 
transformation: 

50 = 'lIs, 

with 

0 
3 3 

(29a) 

(29b) 

m= [~ 1 0] o , so=Isjaj, Ro = 2x;a;. 
;=1 ;=1 

0 lib 

With this transformation it develops that 

(m') = _b_ i e iso·Rt sin UT(S~ - [2)1 ds 
12 (2)3 ( 2 [2)1 0 , 7T E3 U So -

(30) 

in which 

Rl = x1a1 + X2a2 + (X3 - y'T)aa, Y' = (o.la)bu2. 

Choosing next a spherical coordinate system with its 
polar axis along the Rl direction and proceeding ex-

actly as in Ref. 24, one establishes that 

(9\') = ~ J.. 6(R - UT) 12 4 R 1 7TU 1 

+ !!.- 1 J l[[(Ri - U2T2)l]1+( Rl - UT) 
47T (Ri + u2T2)1 

(31) 

where 1+ designates the Heaviside unit step function, 
and 

(m)12 = exp (-p' - QT)(m')12, ,= z - Z'.35 

(32) 
Finally, 

for t < t', and 

G(r, tfr', t') 

= 1(-1(R)12 

G(r, tlr', t') = 0 

= 1(-1 exp (- p' - qT){~ J.. b(RI - UT) 
47TU Rl 

(33a) 

b 1 1 Jl[l(R~ - u2T2)1]1+(Rl - UT)} 
47T (Ri - U2

T2f 

(33b) 
for t 2 1'. In this equation, 

Rl = [(x - X')2 + (y - y')2 + b2(' - y'Tlb)2)!. 

(34) 

Before an attempt is made to interpret the solution 
in Eq. (33), we first direct our attention to the follow­
ing interesting special cases: 

Case I. If v i= 0 and a' = 0, the generalized function 

b 1 
G(r, tjr', t') = -- - b(RI - UT) (35) 

41(7TU Rl 
satisfies the equation 

[ 
1 02 0. 02 

v2+---2-­
t a OZ2 a ozot 

(
0.

2 

) 0
2

] + -;; - e'ft' a ot2 G(r, tfr', t') 

= b(r - r')b(t - t') (36) 

35 ~ and ~' are used in connection with the scalar functions 
'¥(r, t) and $(r, t), respectively. 

36 Vo is the phase velocity of a wave in the medium, as seen by an 
observer in the rest frame of the medium. 
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it can be shown that the Green's function can be 
rewritten as 

G(r, tlr', t') 

= ...L[1 - (fJ/~)2J!..l b{-r _ RI[l - (fJ/~)2J!} 
47T 1 - fJ RI Vo 1 - fJ 

(37) 

with 

RI = [(X - X,)2 + (y _ y,)2 

n
2 

- fJ2 ( n
2 

- 1 )2J! + n2(l _ fJ2) ~ - n2 _ fJ2 v-r , (38) 

which is the solutjon obtained previously by Compton 
(cf. Ref. 23). 

Case II. If a' :F- 0, but we are considering the 
nonrelativistic limit, i.e., the case where vic and 
vIvo « 1, the generalized function given by (33) with 

p = -i(a'f-l'v) + f-l'aA/2E', q = aI2E', 

A = (f-l'E' - f-loEO)V, 

b (1 A2;, ,)-I -2 , 2A = + ft E ,U = vo, K = vo , y = U l1., 

and [2 = f-l'E'q2 + 2Apq - p2 is the solution to the 
problem 

(V2 " 0
2 

, , 0 2A 0
2 

, , 0) -Ef-l--f-l a -- --f-l a -at2 at azot oz 
x G(r, tlr', t') = b(r - r')o(t - t') (39) 

for t ;;:: t', which has been investigated previously by 
Besieris (cf. Ref. 24). 

Case III. Lastly, if v = 0 (or f-lE = f-loEO) and 
a = 0, 

G(r, tlr', I') = (vo/47rR)o(R - vo-r) (40) 

is the well-known solution of the simple wave equation 

(V2 _l (2)G(r, tlr', t') = b(r - r')o(t - tf), 
V~ ot2 

t;;:: t'. (41) 

v. INTERPRETATION OF THE SOLUTION 

The part of the Green's function G(r, t/r', t') [cf. 
Eq. (33)] containing the Dirac delta function can be 
interpreted as an expanding wavefront which arrives 
at Rl = u-r diminished by the geometrical factor 
l/RI and modified by the exponential term 
exp (-p~ - q-r). R1 , as given in Eq. (34), can be taken 
as the "radial distance" between the point (x', y', 
z' + y'-rlb) and the observation point rex, y, z), with 
a scaling of the z-axis dimension by the factor b due 
to the Lorentz contraction along this axis. 

Whereas for a "stationary" medium (v = 0 or 
f-l' E' = f-loEO) the expanding wavefronts are spheres 
centered at the spatial position of the source, in the 
more general problem under consideration here, 
apart from the multiplicative factors l/RI and 
exp (-p~ - q-r), the wavefronts obey the equation 

(42) 

It is quite easy to show that, for constant values of T, 

the wavefronts are actually spheroidal surfaces with 
semiaxes u-r, u-r, and u-rlb along the directions of the 
x, y, and z axes, respectively. Before any more 
remarks are made regarding the nature of these 
wavefronts, it should be noted that the wavefront 
center (x', y', z' + y-r'/b) moves along the z direction 
at the speed y' lb. Since, however, 

y'/b = v(n2 - 1)/(n2 - fJ2) < v, 

the center of the spheroid moves slowly, and one 
might say that it "cannot keep up with the medium." 

Two special cases are considered next, by assigning 
specific ranges to the velocity of the medium: 

Case I. When the medium moves slowly enough so 
that nfJ = vivo < 1, since b > 1, it follows that 
u-rlb < U'T which implies, in turn, that the expanding 
shells are oblate spheroids with respect to the z axis. 
Consider next the ratio of the distances associated, 
first with the semiaxis along the z direction and 
secondly the position of the wavefront center relative 
to the source point r', viz., 

u-r/y'-r =!:!:.. = ~ n2 
- (V/VO)2 

b b y' v n2 
- 1 

Since by assumption vivo < 1, this ratio is greater than 
unity. This shows clearly that the shell encloses the 
source point; that is, the source radiates in all 
directions.37 

The effect of a pulse at a distance Rl and at a time 
-r after its onset vanishes for Rl > u-r, that is, as long 
as the wave initiated by the pulse has not had sufficient 
time to reach the observation point r. 

Case II. If now the material moves with high 
enough speed so that vivo> 1, the entire sheII­
which is stilI an oblate spheroid with respect to the 
z axis-is "dragged" away from the source point. The 
source point is outside the shell, and the shell is, at all 
times, tangent to a cone of interior half-angle 00 

specified by the relation 

cos 00 = [(n2fJ2 - 1)/fJ2(n2 - l)]l. 

37 This is always the case in the nonrelativistic limit. 
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An observer positioned outside the cone will not 
experience any radiation effects. However, someone 
located inside the conical region will detect two 
discontinuities, caused first by one side of the ex­
panding and moving wavefron~ and then the other. 
This effect is the well-known Cerenkov phenomenon. 

In either Case I and Case II, at Rl = UT, the 
original pulse arrives diminished by the geometrical 
factor IIRl . The wave then leaves in its wake a 
residue, or "tail," which persists for an infinite time at 

points which have been traversed by the wavefronts. 
This contribution is represented by the second part of 
G(r, tlr', t') in Eq. (33). The entire solution is, of 
course, attenuated exponentially in the z direction 
Moreover, it subsides exponentially with respect to 
time. 

ACKNOWLEDGMENT 

The authors gratefully acknowledge the advice, 
guidance and continued interest of Professor R. E. 
Collin. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 8, NUMBER 12 DECEMBER 1967 

Infinite Systems of Classical Particles* 

AMNON KATZt 
Argonne National Laboratory, Argonne, Illinois 

(Received 13 March 1967) 

In this paper, infinite translation-invariant and periodic systems of classical particles are treated di­
rectly-not as limits of finite systems. A formalism of classical creation and annihilation operators that 
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1. INTRODUCTION 

WITH the possible exception of the "true vacuum" 
of the theories of elementary particles, all systems 

of physical interest are finite. Still, infinite systems 
have always held great attraction for the theorist. The 
simplifying features that go with translation invariance 
apply only in the infinite case. Also, phase transitions 
and broken symmetries, although apparent to the 
experimenter in finite samples, become truly qualitative 
phenomena only in infinite systems. 

The traditional approach to infinite systems is to 
regard them as limits of finite systems as the volume 
and number of particles tend to infinity with the 
density remaining constant. One speaks of "quasi­
averages" 1 which are limits of expectation values in 
finite systems. 

The alternative of directly treating infinite systems 
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has received increasing attention in recent years.2- 6 
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energy remain meaningful. In the quantum theory of 
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paid to "algebras of local observables." 7 A state of the 
system is then defined as a positive, normalized 
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words, a state of the system is the set of expectation 
values of all dynamical variables. 8 States correspond­
ing to infinite translation-invariant (or periodic) 

2 D. W. Robinson, Commun. Math. Phys. 1, 159 (1965). 
3 G. F. Dell'Antonio, S. Doplicher, and D. Ruelle, Commun. 

Math. Phys. 2, 223 (1966). 
« D. Ruelle, Commun. Math. Phys. 3, 133 (1966). 
6 D. Kastler and D. W. Robinson, Commun. Math. Phys. 3, 

151 (1966). 
• R. Haag, N. M. Hugenholtz, and M. Winnink, Commun. Math. 

Phys. 5, 215 (1967). 
7 R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964), Sees. 

I and II. 
S The concept goes back to J. von Neumann, Mathematical 

Foundations of Quantum Mechanics (Princeton University Press, 
Princeton, New Jersey, 1965)-although he did not call it a "state." 



                                                                                                                                    

ELECTROMAGNETIC WAVES IN MOVING MEDIA 2451 

An observer positioned outside the cone will not 
experience any radiation effects. However, someone 
located inside the conical region will detect two 
discontinuities, caused first by one side of the ex­
panding and moving wavefron~ and then the other. 
This effect is the well-known Cerenkov phenomenon. 

In either Case I and Case II, at Rl = UT, the 
original pulse arrives diminished by the geometrical 
factor IIRl . The wave then leaves in its wake a 
residue, or "tail," which persists for an infinite time at 

points which have been traversed by the wavefronts. 
This contribution is represented by the second part of 
G(r, tlr', t') in Eq. (33). The entire solution is, of 
course, attenuated exponentially in the z direction 
Moreover, it subsides exponentially with respect to 
time. 

ACKNOWLEDGMENT 

The authors gratefully acknowledge the advice, 
guidance and continued interest of Professor R. E. 
Collin. 

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 8, NUMBER 12 DECEMBER 1967 

Infinite Systems of Classical Particles* 

AMNON KATZt 
Argonne National Laboratory, Argonne, Illinois 

(Received 13 March 1967) 

In this paper, infinite translation-invariant and periodic systems of classical particles are treated di­
rectly-not as limits of finite systems. A formalism of classical creation and annihilation operators that 
create and destroy classical identical particles at points of phase space is employed. By use of this for­
malism, classical dynamical variables are expressed without reference to the canonical coordinates and 
momenta of individual particles, or to the number of particles. Different physical situations are described 
by different representations of the algebra of creation and annihilation operators. The concept of thermal 
equilibrium is generalized so as to be meaningful in infinite systems. Stationary states and thermal-equilib­
rium states for an infinite system of noninteracting particles (possibly in a periodic external potential) 
are exhibited explicitly. 

1. INTRODUCTION 

WITH the possible exception of the "true vacuum" 
of the theories of elementary particles, all systems 

of physical interest are finite. Still, infinite systems 
have always held great attraction for the theorist. The 
simplifying features that go with translation invariance 
apply only in the infinite case. Also, phase transitions 
and broken symmetries, although apparent to the 
experimenter in finite samples, become truly qualitative 
phenomena only in infinite systems. 

The traditional approach to infinite systems is to 
regard them as limits of finite systems as the volume 
and number of particles tend to infinity with the 
density remaining constant. One speaks of "quasi­
averages" 1 which are limits of expectation values in 
finite systems. 

The alternative of directly treating infinite systems 

• Work performed under the auspices of the U.S. Atomic Energy 
Commission. 

t On leave from the Weizmann Institute, Rehovoth, Israel. 
Present address: Department of Physics, University of Washington, 
Seattle, Washington. 

1 N. N. Bogoliubov, Physiea Suppl. 26, SI (1960). 

has received increasing attention in recent years.2- 6 

Although global dynamical variables such as the total 
number of particles or the total energy become infinite 
(and hence meaningless) in infinite systems, such local 
dynamical variables as the density of particles or of 
energy remain meaningful. In the quantum theory of 
relativistic fields, a great deal of attention has been 
paid to "algebras of local observables." 7 A state of the 
system is then defined as a positive, normalized 
(continuous) linear functional on the algebra; in other 
words, a state of the system is the set of expectation 
values of all dynamical variables. 8 States correspond­
ing to infinite translation-invariant (or periodic) 

2 D. W. Robinson, Commun. Math. Phys. 1, 159 (1965). 
3 G. F. Dell'Antonio, S. Doplicher, and D. Ruelle, Commun. 

Math. Phys. 2, 223 (1966). 
« D. Ruelle, Commun. Math. Phys. 3, 133 (1966). 
6 D. Kastler and D. W. Robinson, Commun. Math. Phys. 3, 

151 (1966). 
• R. Haag, N. M. Hugenholtz, and M. Winnink, Commun. Math. 

Phys. 5, 215 (1967). 
7 R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1964), Sees. 

I and II. 
S The concept goes back to J. von Neumann, Mathematical 

Foundations of Quantum Mechanics (Princeton University Press, 
Princeton, New Jersey, 1965)-although he did not call it a "state." 



                                                                                                                                    

2452 AMNON KATZ 

situations with a finite average density of particles 
exist.2-5.9.io Every state can be implemented by a 
procedure known as the Gel'fand constructionll in a 
suitable separable Hilbert space which is a representa­
tion space of the algebra of local observables. There 
exist many inequivalent representations.ll The choice 
of a state implies the choice of a representation in 
which it can be implemented. The choice of representa­
tion therefore embodies a large part of the physics. 

A rigorous evaluation of quasi-averages as limits 
ought to be quite a complicated endeavor. It should 
involve the dynamical description of the boundary of 
the system for every finite volume. The direct treat­
ment of infinite systems avoids this as well as the 
limiting procedure. It remains, of course, to be shown 
that the two approaches are equivalent. It should be 
remarked, however, that people who claim to be 
calculating quasi-averages usually avoid a detailed 
description of the boundary and take various short 
cuts-some of which amount to a direct calculation 
in the infinite case. The calculation of Martin and 
Schwinger,12 who made use of thermal Green's 
functions, is one such calculation in an infinite 
system. The only appeal to finite systems is for the 
derivation of the "boundary condition" (AB)p = 
(B( -ili{J)A)p, which is then applied in the infinite 
case. The "boundary condition" is in effect used as the 
definition of thermal equilibrium in the infinite system, 
for which the construction involving exp (-{JH) 
no longer applies. In fact, some later authors6 

accept the boundary condition of Martin and 
Schwinger as the definition of thermal equilibrium in 
an infinite system. (Other authors,9.10 conversely, define 
the state of thermal equilibrium by the limit of 
expectation values in a finite system and later endeavor 
to implement the state so defined.) 

The quantum mechanical treatment of infinite 
systems is made possible by the "second-quantized" 
formalism which expresses dynamical variables with­
out reference to individual particles or to their number. 
In spite of its name, "second quantization" (which 
does not involve Planck's constant Ii) has nothing to 
do with physical quantization. The creation and 
annihilation operators merely count particles occupy­
ing first-quantized single-particle states. A similar 
formalism for classical identical particles has been put 
forward by this author. i3 It involves operators that 

• H. Araki and E. J. Woods, J. Math. Phys. 4, 637 (1963). 
10 H. Araki and W. Wyss, Helv. Phys. Acta 37, 136 (1964). 
11 I. E. Segal, Mathematical Problems of Relativistic Physics 

(American Mathematical Society, Providence, Rhode Island, 1963). 
Further references may be found in this book. 

12 P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959). 
13 A. Katz, Principles of Statistical Mechanics (The Information 

Theory Approach) (W. H. Freeman and Company, San Francisco, 
1967), Appendix B and Sec. 3 of Chap. VII. 

create and destroy particles at various points in the 
phase space of a single particle. This formalism makes 
it possible to treat infinite systems of classical particles 
by considering suitable representations of the classical 
creation and annihilation operators. This is the subject 
of the present paper. 

2. SCOPE AND PLAN OF PRESENTATION 

The next two sections review the formalism describ­
ing a system of an indefinite (finite) number of 
particles and the formalism of classical creation and 
annihilation operators. The space in which a state of 
an indefinite number of identical particles can be 
represented is discussed in Sec. 3. This is the classical 
analog of the quantum mechanical Fock space. In 
Sec. 4 it serves as the defining space for the algebra of 
creation and annihilation operators. Derivations are 
omitted in Secs. 3 and 4. They all follow directly from 
the definitions; some of them may be found in Ref. 13. 
Section 5 introduces the algebra of local dynamical 
variables. Section 6 offers an example of a class of 
representations that can describe translation-invariant 
or periodic situations with finite average density of 
particles-in other words, nontrivial infinite systems. 
For noninteracting particles possibly in an external 
potential, this class of representations allows us to 
represent explicitly stationary states in Sec. 7 and 
thermal-equilibrium states in Sec. 9. General proper­
ties and characterization of stationary states and of 
thermal equilibrium (for particles with interaction) 
are discussed in Secs. 7 and 8, respectively. In the 
definition of thermal equilibrium put forward in 
Sec. 8, the construction involving exp (-PH) is 
generalized to infinite systems. This definition may be 
considered the classical analog of the "boundary 
condition" of Martin and Schwinger. Since the 
purpose of the present paper is merely to present and 
illustrate the formalism, only problems of noninter­
acting particles have been worked out. 

3. GRAND CANONICAL APPROACH 

This section briefly summarizes the grand canonical 
treatment of identical classical particles.13

.I( In this 
treatment the state of the system is represented by a 
"statistical element" I which is a sequence 

1= Uo,h,/2'··· ,fN'" .), (3.1) 

where IN is a nonnegative measure on the phase 
space of N classical particles and is symmetric in all 
particles. IS The phase space in question is the Euclid­
ean space of all coordinates and canonically conjugate 

14 J. M. Cook, Institut D'Etudes Scientifiques de Cargese, Cargese, 
France, lecture notes, 1965. 

15 In the special case of the grand canonical ensemble, fN = 
exp (n - {3HN - rxN), where HN is the N-partic1e Hamiltonian. 
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momenta of N particles: qI, PI' ... , «IN, PN' The 
measure density IN(qI' PI' ... , «IN, PN) must be 
unchanged by any permutation of the particle indices, 
i.e., 

IN(q~, P~ , ... , qa.,\" Pa) 

= IN(ql, PI' ... , qN' PN) (3.2) 

for all permutations n ~ an' The total weight of the 
entire N-particle phase space is 

PN == f dql dpl ... dqN dpN (~)fN' (3.3) 

where 10 is a non-negative constant Po = 10' and P N 

is interpreted as the probability that the number of 
particles in the system is N. Consequently, we demand 
that statistical elements representing physical states 
should satisfy the relation 

(3.4) 

Equations (3.3) and (3.4) constitute a normalization 
condition onf. In the following we shall, in addition, 
consider unnormalized and not necessarily positive 
objects I = (fo,/1>/2' ... ), such that 

IIfll ==.L - dql dpi ... dqN dPN IfNI ~ 1 f 
N=oN! 

is finite but not necessarily equal to 1. Here IN is a 
measure over the N-particle phase space. The form 
Ilfli may serve as a norm in the space of objects I 
(state representatives), which becomes a normed 
linear space. We also define 

Tr f ==.L - dqI dPI ... d«IN dpNf N' (3.5) 0() 1 f 
N=oN! 

Thus, Tr I is a linear· form on the space of objects f. 
For the representatives of physical states, one has 
Tr 1= Ilfll = 1. The form Tr I is useful in expressing 
expectation values of dynamical variables. 

The weight accorded to a subset of the phase space 
of N particles by the measure density (l/N!)fN 
belonging to a physical (positive and normalized) I 
together with all the subsets resulting from it by 
permutations of the N particles is interpreted as the 
probability that there are N (identical) particles in the 
system and that they occupy the positions and. mo­
menta in the subset. I6 Both pure and mixed states may 
be represented in this way. Pure states are represented 
by all IN vanishing save one, which is a symmetrized 
delta function. 

16 As long as the measure densities are integrable functions, the 
N! subsets obtained from each other by permutations of the N 
particles intersect each other on sets of measure zero; counting 
them all is the same as counting just one and multiplying by N!. 
One may then integrate on one subset only and drop the factor 
(lIN!). 

Dynamical variables are also represented as 
sequences 

F = (Fo, FI , F2 ,' •• ,FN ,' •• ). (3.6) 

This time F N is a continuous function on the phase 
space of N particles which is symmetric under permuta­
tions of the particles. The expectation value of the 
dynamical quantity F in the state I is 

(f F) == i fdqI dPI ... d«IN dPN(~)fNF N' (3.7) 
N=O N! 

For arbitrary t, the existence of (f F) can be guaran­
teed only for those functions F that are bounded i.e., 
only if there exists a bound A such that IFNI < A for 
all N and all ql' PI, ... , qN' P N,l7 The space of 
bounded dynamical variables may be taken as a 
Banach space with the lowest bound for norm. The 
space of all representatives I of states (not necessarily 
normalized to 1) is then contained in its strong dual­
the space of all continuous linear forms on the space 
of bounded dynamical variables. In this way we see 
how our I connect to the abstract concept of a state as 
a continuous linear form. 

Most of the dynamical variables of interest are not 
bounded. An unbounded F may be connected to the 
bounded dynamical variable 

exp (iF) == (exp {iFo}, exp {iFI }, •• '). (3.8) 

Dynamical variables may depend on parameters as 
functions or as generalized functions. IS 

We define the product of a statistical element I by a 
dynamical variable F to be 

FI = (Fofo, Fdl' F2t2' ... , F NtN' ... ), (3.9) 

which is a new statistical element. In this way the 
dynamical variables appear as (an Abelian algebra of) 
linear operators on the space of statistical elements. 
The bounded dynamical variables become bounded 
(and therefore continuous) operators. The expectation 
value of F in the state represented by I may now be 
written as 

(f F) = Tr Ff. (3.10) 

A dynamical variable is considered to be a single­
particle variable if it is of the form 

Fl = (0, gI(qI' PI), gI(qI' Pl~ + gl(q2' P2), ... , 

a~gl(qa,Pa),"-)' (3.11) 

17 Here, as in several other places, an attempt is made to classify 
the mathematical structures involved. This is done for the purpose 
of future applications to problems that are not explicitly solvable. 
All of the illustrations in the present paper are worked out explicitly 
by construction and can be followed without appeal to "highbrow" 
mathematics. 

18 For example, the density of particles at the point x in space is 
represented by N 

FN = .L ~(x - q.). 
a=l 

which depends on x as a generalized function. 
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It is a two-particle variable if it is of the form operator cp(q, p) is defined by 

F2 = (0,0, g2.(qI' PI' q2, P2), 

g2(~, PI' q2, P2) + g2(q2' P2' qa, Pa) 

+ g2(qs, Pa, qI, PI)' ... ); 

and similarly for an n-particle variable. A zero-particle 
variable is a constant, i.e., 

(3.13) 

cp(q, p)f = /', (4.1) 

with 

= fN+l(ql, PI, ... ,qN' PN, q, p). (4.2) 

The creation operator is defined by 

cpt(q,p)f=!", (4.3) 
where gO is a number. The general dynamical variable with 
F of Eq. (3.5) may be expanded in dynamical variables 
of a definite number of particles, i.e., f;(ql> PI' ... , ~, PN) 

where 

(3.14) 

(3.15) 

(3.16) 

g2(~, PI, q2' P2) = F 2(ql, PI' q2' P2) - F1(ql, PI) 

- F I(q2, P2) + Fo, (3.17) 
and so on. 

Dynamical variables in classical mechanics also 
playa role as generators of canonical transformations. 
A dynamical quantity W = (Wo, WI' W2 , ••• ) may 
generate a transformation in F of Eq. (3.5) through 

dF/dIX = {W, F} = 
({ Wo, Fo}, {WI' F I }, {W2' F2}, ... ), (3.18) 

where {WN' FN} is the N-particle Poisson bracket 

{WN,FN} =I OWN .OFN _ OWN .OFN (3.19) 
a~l oPa oqa oqa oPa 

and {Wo, Fo} = O. The transformation depends on the 
continuous parameter IX. The time development is 
generated in this way by the Hamiltonian. We are 
representing all canonical transformations in the 
Heisenberg picture in which the dynamical variables 
are mapped onto themselves and the states and their 
representatives are left unchanged. A Schrodinger 
picture, in which the states are transformed, is also 
possible but will not be discussed here. 

4. CREATION AND ANNIHILATION 
OPERATORS 

In this section we define creation and annihilation 
operators1a which can act on state representatives and 
turn them into new (not necessarily normalized) state 
representatives. The creation and annihilation opera­
tors are labeled by points q, P in a single-particle phase 
space and are interpreted as creating or destroying 
particles at that point in phase space. The annihilation 

N-I 
= ~ fN-I(q!+v, P!+v, ... , qN-!+v, PN-l+v) 

v~o 

x b(qv - q)b(pv - p) (4.4) 

for N > 0 and 
f~ = O. (4.5) 

All the particle indices on the right-hand side of 
Eq. (4.4) are taken modulo N. The right-hand side of 
Eq. (4.2) is, in general, a measure in q, p. The annihila­
tion operators are therefore operator-valued measures 
and must be smeared with a continuous test function 
before a proper operator is obtained. The right-hand 
side ofEq. (4.4) is a measure in qI,Pl,··· ,qN,PN 
even for fixed q, p. The creation operator is therefore 
a proper operator even without smearing. The product 
cpt(q, p)cp(q, p) is an operator-valued measure. 

We next proceed to state the most important 
properties of the creation and annihilation operators. 
All these properties are straightforward consequences 
of the definitions of cp and cpt. Some of the derivations 
may be found in Ref. 13. The operators cp and cp t 
satisfy the commutation relations 

[cp(q, p), cpt (q' , p')] = b(q - q')b(p - p'), 
(4.6) 

[cp(q, p), cp(q', p')] = [cpt(q, p), cpt(q', p')] = o. 
They have the Hermiticity property 

(F. cpt(q, p)f) = (cp(q, p)F .f), 

(F. cp(q, p)f) = (cpt(q, p)F .f), 
(4.7) 

where the action of the creation and annihilation 
operators on the dynamical variable F is defined in 
complete analogy to their action on state represent­
atives f; every lower-case f is just replaced by a capital 
Fin Eqs. (4.1)-(4.5).19 

To each single-particle dynamical variable pi we 

19 However, when acting on the dynamical variable F, whose 
components are continuous functions, the annihilation operator 
is the proper operator, while the creation operator is an operator­
valued measure. 
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now associate two operators: 

pI == f dq dpgl(q, p)cpt (q, p)cp(q, p), (4.8) 

F == f dq dpgl(q, p) 

X (aCPt (q, p) • acp(q. p) _ acpt (q, p). acp(q, P») 
op oq op oq 

== - f dq dpi(q, p){cptcq, p), cp(q, p)}. (4.9) 

Both of these operators involve the product of a 
creation operator and an annihilation operator at the 
same point in phase space smeared by the continuous 
function gl, 

The operator PI has the property 

P1f= F1f; (4.10) 

its action on a statistical element f is identical to that 
of the original linear operator associated with FI, 
The operator PI is just a way to write the operator P 
without reference to the phase spaces of various 
numbers of particles. The expectation value of P 
may now be expressed as 

Tr FIf = Tr PIj = f dq dpgl(q, p) Tr (cpt (q, p)cp(q, p)f), 

(4.11) 

The expectation value of cpt(q, p)cp(q, p) thus deter­
mines the expectation value of any single-particle 
dynamical variable. 

The operator Fl serves to generate in {j1 the canon­
ical transformation that the dynamical variable P 
generates in the dynamical variable GI. That is, 

d{jl/doc = [f\ {jl] = {Ft, GI}~, (4.12) 

where {P, GI}~ is the operator constructed from the 
single-particle dynamical variable which is the Poisson 
bracket of P and Gl in the manner of Eq. (4.8). 

Everything said above generalizes immediately to 
dynamical variables of any number of particles. For a 
two-particle dynamical variable F2, we define 

f'2 == ~ f dql dpi dqz dp2g2( ql , PI' q2' P2) 

X cpt(q}> PI)cpt(q2' pz)cp(qz, P2)CP(ql, PI), (4.13) 

fl'2 = - ~ f dql dpl dq2 dPzi( ql , PI' q2. P2) 

x {cp t(ql' Pl)CP \q2' P2). cp(qz, PZ)CP(ql, PI)}, (4.14) 

and similarly for dynamical variables of any number 
of particles, We now find 

(4.15) 

The expectation value of F'" if 

Tr Fnf= Tr Fnf 

= ~ fdqI dPt· •. dqn dPngn( ~, PI , ... , qn' p,,) 
n. 

x Tr cpf(ql' PI)'" cpt(q", Pn)cp(qn, Pn)'" CP(qI' PI)f, 

(4.16) 

and Fn generates canonical transformations in Gm 
through 

d{jm/doc = [Fn, {jm] = {P, Gffl}-. (4.17) 

In the last equation the tilde is applied to {Fn, Gm}, 
which is not ordinarily a dynamical variable of a 
definite number of particles. When F is not a dynam­
ical variable of a definite number of particles, P means 
po + Fl + F2 + .. " where FO + pI + F2 + .. , is 
the expansion of F in dynamical variables of a definite 
number of particles [Eqs. (3.14)-(3.17)]. 

5. LOCAL DYNAMICAL VARIABLES AND 
INFINITE SYSTEMS 

We consider a single-particle dynamical quantity 
P to be local if the corresponding gl(q, p) has its 
support in the product of a compact set of position 
(q) space by the whole of momentum (p) space. An 
n-particle dynamical quantity Fn is local if the corre­
sponding gn(ql' 'PI, ... , qn' Pn) has its support in the 
product of compact sets in the n position spaces by the 
whole of the corresponding momentum spaces. Many 
important dynamical variables are not local. The total 
number of particles gl(q, p) = 1, total momentum 
gl(q, p) = p, and total kinetic energy gl(q, p) = 
p2!(2m), among many others, are not local. It is these 
global quantities that usually lose their meaning in an 
infinite translation invariant (or periodic) system. If 
the density of particles is finite, the total number of 
particles is infinite. Local quantities usually retain 
their meaning even in infinite systems. We now con­
sider only local dynamical variables; and this will 
open the way to the treatment of infinite translation 
invariant systems. The restriction of the space of 
dynamical variables naturally enlarges the space of 
states. We seek to exhibit some of the new states by 
implementation of the algebra of local dynamical 
variables. 

Since we have now reexpressed our dynamical 
variables in a language that makes no reference to 
phase spaces of finite numbers of particles, it is no 
longer necessary to express the statistical element f in 
terms of phase spaces of particles. Since our dynamical 
variables are now expressed in terms of the creation 
and annihilation operators, what is now necessary is a 
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"traced" representation space (Le., a space with a real 
linear functional f --+ Tr j) for the algebra of creation 
and annihilation operators, so that expressions (4.12) 
and (4.17) for the expectation values of operators can 
be employed. A few simple examples are presented in 
the following sections. 

6. SIMPLE EXAMPLES OF INFINITE SYSTEMS 
WITH FINITE AVERAGE DENSITY 

When the original space of state representatives 
/ = (/o,fu /2' ... ) is considered as a representation 
space for the algebra of creation and annihilation 
operators, it may be characterized in the following 
way. The space contains a unique translation invariant 
element 

v==(l,O,O,O,"'), (6.i) 

which represents the vacuum-a state without 
particles. The element v is cyclic in the sense that all 
other elements of the space may be constructed from 
v by application of creation operators. All annihilation 
operators destroy v, i.e., 

cfo(q, p)v = 0. (6.2) 

Let us now consider an algebra of operators 

'ljJ(q, p) == cfo(q, p) - seq, p), 

'ljJt(q, p) == cfot(q, p) - seq, p), 
(6.3) 

where seq, p) is a real function such that the integral of 
s(s + 1) over all of p space and over a bounded region 
of q space exists and converges. The algebra generated 
by 'ljJ and 'ljJt is isomorphic to the algebra of the 
original creation and annihilation operators. One 
may therefore construct for them a representation 
space with a cyclic vector g satisfying 

'ljJ(q, p)g = 0, (6.4) 
or 

cfo(q, p)g = seq, p)g. (6.5) 

The representation of the algebra generated by 'ljJ 
and 'ljJ t in the space constructed from g is in every way 
equivalent to the representation of the original algebra 
generated by cfo and cfo t in the space constructed from v. 
We, however, consider the space based on g as a 
new representation of the original algebra. This new 
representation is quite different from the original 
representation. 

In the new representation we have 

Tr cfot(q, p)cfo(q, p)g = Tr 'ljJt(q, p)'ljJ(q, p)g 

+ seq, p) Tr 'ljJ(q, p)g + seq, p) Tr 'ljJt(q, p)g 

+ seq, p)2 Tr g. (6.6) 

Now Tr g = 1 because of its normalization; Eq. (6.4) 

makes the first two terms on the right-hand side of 
Eq. (6.6) vanish; and a straightforward calculation 
in the original representation leads to Tr ('ljJ t (q, p)g) = 
1. Eq. (6.6) is thus reduced to 

Tr cfot(q, p)cfo(q, p)g 

= seq, p)[s(q, p) + 1] == n(q, p). (6.7) 

According to Eq. (4.12) this determines all the expecta­
tion values of single-particle dynamical variables in 
the state represented by g.20 The number density of 
particles at point x in space is a single-particle dy­
namical quantity with gl(q, p) = b(q - x). Conse­
quently the expectation value of the density at x is 

n(x) = f dq dpb(q - x)n(q, p) = f dpn(x, p). (6.8) 

The n(x, p) describes the distribution of momenta at 
x. A translation invariant situation is obtained by 
choosing seq, p) [and therefore n(q, p)] independent 
of q. A periodic situation results from a choice of 
n(q, p) which is periodic in q. Expectation values of 
dynamical variables of more than one particle may be 
similarly evaluated. Also, states that differ from the 
one represented by g only locally may be represented 
by applying creation operators to g. 

7. STATIONARY TRANSLATION 
INVARIANT OR PERIODIC STATES 

Stationary situations, and situations not far 
removed from being stationary, 21 are of particular 
interest in physics. We, therefore, concentrate in this 
section on representations of the creation and anni­
hilation operators based on a cyclic element g that 
represents a state with a finite average density of 
particles, one that is either translation invariant or 
periodic, and that is at the same time stationary. 

A stationary state is one in which all expectation 
values remain. constant in time. In the original grand 
canonical approach (Sec. 4) time development is 
governed by a Hamiltonian 

H = HI + H2 + '" + Hn, (7.1) 

where the term H· in the Hamiltonian is a 'II-particle 
dynamical variable. The operator h = hI + h2 + 
... + hn generates the time development in the 
operator F corresponding to any dynamical variable 
F by commutation. We retain this time development in 
the new representation, even though nand h may 
have lost their status as operators. 

20 A choice of s(q, p) between 0 and -I leads to a negative density 
of particles in phase space. We discard such a choice as unphysical. 

U Such as quantum states represented by state vectors expandable 
in terms of stationary-state vectors. 
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For illustration let us consider a Hamiltonian with 
n = 2, whose first term HI is a single-particle variable 
characterized by 

1 p2 
h (ql, PI) = 2m + U(ql), (7.2) 

and whose second term H2 is a two-body interaction 
depending on interparticle distance only, so that it is 
given by 

h2(qu PI> q2, P2) = V(lql - q2\)' (7.3) 

In this case 

11= - fdqdP{:~ + U(v}{cpt(q, p), cp(q, p)} 

-~ f dql dPt dq2 dp2V(lql - q2l) 

X {CPt(ql' Pl)CPt(q2' P2), CP(q2' P2)CP(ql' Pt)}. (7.4) 

Since all operators F may be expressed in terms of the 
creation and annihilation operators, all the informa­
tion about time development is contained in the time 
development of the creation and annihilation opera­
tors themselves. We find 

E.. cp(q, p) = (_ 1. . ! + ou(q) • ! 
dt m oq oq op 
+ f dq' dp' OV(I~; q'l} cp t(q', p')CP(q', pi) ~) cp(q, p), 

(7.5) 

and a corresponding equation for cpt(q, p) in which 
cp(q, p) is replaced by cpt(q, p). It is these equations of 
motion that we take over into the new representation. 
If the new representation is based on a cyclic element 
W representing a stationary state, we must have 

i (- ~ . i. + ou(qa) • .i.) 
a=l m oqa cqa CPa 

X Tr A(ql' PI' ... , q,1' Pn)W 

+ i fdq' dp' aV(lqa - q'l) • ..! 
a=l oqa Opa 

X Tr <!>t(q', p')<!>(q', p')A(ql, PI"'" qn' Pn)W' = 0, 

(7.6) 

where A (q1 , PI' ... , qn' qn) is any pOlynomial in 
creation and annihilation operators labeled by the 
points (q1' PI), •.. , (qn' Pn)· 

An explicit characterization of the stationary W is, 
of course, impossible to work out in practice, as is the 
determination of any representation of a stationary 
state of many interacting particles. This problem is 
outside our scope in the paper. However, for non­
interacting particles [i.e., taking V(lq - q'l) = 0 and 

H = W], the cyclic element g of the representation 
discussed in the last section can be made to represent 
a stationary state. To see this, choose n = 1 and 
A(q, p) = CP(q, p). This choice turns Eq. (7.6) into 

(_ ~.! + ou(q). !)S(q, p) = O. (7.7) 
moq oq op 

If the single-particle potential u(q) vanishes, this 
condition is satisfied for every choice of seq, p) that is 
independent of q, i.e., in every translation invariant 
situation. For a periodic u(q), Eq. (7.7) is satisfied 
by a suitable class of seq, p) that are periodic in q. 
Since any A(ql' PI, ... , qn' Pn) is expressible as a 
function of s(q1' PI)' ... , s(q" , Pn), it is easy to see 
that onCe Eq. (7.7) is satisfied, the more general 
Eq. (7.6) (with V put equal to zero) also is auto­
matically satisfied. For particles that are either free or 
move in a periodic single-particle potential, we thus 
have explicit representations featuring a cyclic 
element representing a stationary state that is either 
translation invariant or periodic, respectively, and 
that has a finite average density of particles. 

8. THERMAL EQUILIBRIUM 

The state of thermal equilibrium is of great impor­
tance to physics. Here we do not go into any deep 
discussion of the meaning and significance of thermal 
equilibrium. Wherever it may apply, we take thermal 
equilibrium to be a state that, in the original grand 
canonical approach of Sec. 3, is represented by 
i= (fl,};,'" ,iN,"') with 

iN = AN exp (-flHN)' (8.1) 

where HN is the N-particle Hamiltonian and fl = 
l/(kBT), kB being the Boltzmann factor and T the 
temperature. Equation (8.1) includes the canonical 
ensemble (for which AN = AdN,No) and the grand 
canonical ensemble [for which AN = A exp (-ocN)J 
as special cases. 

Strictly speaking, the applicability of Eq. (8.1) is 
very limited indeed. So long as the Hamiltonian 
is translation invariant (or even periodic). the 
statistical element described in Eq. (8.1) cannot be 
normalized unless AN is proportional to dN,o and the 
system in thermal eqUilibrium is the vacuum. The 
usual way to use the construction equation (8.1) to 
describe systems containing particles in thermal 
eqUilibrium is to supplement the Hamiltonian by 
introducing external potentials (representing the walls 
of a container) that surround a certain volume and 
slope up to infinity. The external potentials are not 
customarily treated consistently; one tends to remem­
ber them for certain purposes (e.g., normalization) 
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and forget them for others (e.g., translation invari­
ance). 

Since this paper is concerned with infinite transla­
tion-invariant systems, we are obviously in need of a 
generalization of the concept of thermal equilibrium 
suggested by Eq. (8.l). We need some property which 
is equivalent to Eq. (S.l) wherever the latter applies, 
but which retains its meaning in other cases as well. 
Consider the expectation value of a Poisson bracket 
{U, V} of two dynamical variables taken in the state 
represented by Eq. (8.1). It is given by 

00 A J Tr {U, V}f = L ~ dql dPl ... d'lN dpNe-PHN 

N=O N. 

xi (auN • aVN _ auN • aVN) 
"=1 OPa oqa oq" OPa 

the transition from the second stage to the third being 
made via integrations by parts. The equality between 
the initial and final expressions in Eq. (S.2) is already 
meaningful beyond the scope ofEq. (8.1), because now 
H appears explicitly only as a dynamical variable and 
not as part of the statistical element. However, 
remembering the role of H as the generator of time 
development, we may rewrite Eq. (8.2) as 

Tr {U, V}f = fJ Tr U(dV/dt)f (S.3) 

This last form makes no explicit use of the Hamilton­
ian; it uses the time development itself. It is therefore 
immediately adaptable to our program of treating 
infinite systems by exploring new representation 
spaces for the creation and annihilation operators. It 
immediately becomes 

Tr [0, Vlf = fJ Tr O(dV/dt)f, (8.4) 

where f now stands for the representative of the state 
of thermal equilibrium. 

To sum up: as our new definition of the state of 
thermal equilibrium,22 we now adopt the condition 
(8.3) or (8.4), or, in more common notation, 

where ( )p denotes the expectation value for thermal 
equilibrium at temperature I/(kBfJ). This definition is 
equivalent to the original definition (8.l) where the 
latter applies, but has a much wider range of applica­
bility. 

Some general properties of thermal equilibrium may 
readily be derived from Eq. (S.5)-or from the 
preceding equivalent equations. In this way, by 
choosing U as the constant 1, we find that 

(dV/dt)p = 0, (8.6) 

which shows that the state of thermal equilibrium is a 
stationary state. 

Consider now a canonical transformation generated 
by a dynamical variable W through Eq. (3.18). The 
change of a thermal expectation value under the 
canonical transformation is 

d(U)p/drx = ({W, U})p = -({U, W})p 

= -fJ(U(dW/dt»p, (8.7) 

Therefore, if W is a constant of the motion, all 
expectation values are invariant under the canonical 
transformation which it generates. 23 The converse is 
also true in a space in which thermal equilibrium is 
represented by a cyclic element. It must be observed, 
however, that upon transition to a representation of 
the creation and annihilation operators corresponding 
to an infinite system with finite density, many canon­
ical transformations loose their generators. This means 
that although the transformation of the creation and 
annihilation operators is still meaningful and conserves 
Poisson bracket relations, the generator (or rather W) 
is not a local quantity and hence is no longer an 
operator. In such cases no conclusion may be reached 
from Eq. (8.7)-since in this case the Won the right­
hand side of Eq. (8.7) is actually W. It is then quite 
possible that expectation values should vary when the 
transformation is applied, although the generator 
was a constant of the motion when it existed. Such 
cases are known as "broken symmetries." 

Explicit calculations involving systems of interacting 
particles in thermal equilibrium are naturally major 
undertakings and will not be attempted here. Some 
properties of infinite systems of noninteracting particles 
in thermal equilibrium are worked out in the next 

({U, V})p = fJ(U(dV/dt»p, (8.5) section. 

22 In quantum mechanics, the "boundary condition" derived by 
Martin and Schwinger (Ref. 12) (UV)p = (V(-ihP)U)p may serve 
as the generalized definition of thermal equilibrium. This condition 
may be equivalently stated as 

«i/ft)[U, VJ)p = (ifft)([V(-ihP) - V]U)p = PH dueV(-ihPu)U)p. 

In the classical limit h -- 0, the last condition goes over into Eq. 
(8.5). 

9. IDEAL GAS 

In this section we again consider a one-particle 
Hamiltonian given by hI(q1' PI) = pi/2m + U(q1)' 
We investigate the question whether a suitable choice of 

.3 This does not apply to those constants of the motion that 
depend explicitly on time. 
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seq, p) in the representation of Sec. 6 could describe 
thermal equilibrium with this Hamiltonian. Let us 
first assume that a suitable s/q, p) exists. Consider a 
single-particle dynamical variable Gl, of which the 
gl(q, p) is x(q)y(p). Now choosing U = c/>t(q, p)c/>(q, p) 
and V = Gl in Eq. (8.5), we find that 

(Y(P) O~~q).; _ x(q) O~~). :q)<c/>t(q, p)c/>(q, p»p 

= f3fdql dp' (Pl. ox(q') yep') _ ou(q') • oy(p') X(q'») 
m oq' oq' op' 

X (c/>\q, p)c/>(q, p)c/>t(q', p')c/>(q', p'»p. (9.1) 

In the particular representation of Sec. 6, the expecta­
tion values in the last equation may be evaluated 
explicitly. As was already given in Eq. (6.7), one of 
them is 

<c/>t(q, p)c/>(q, p»p 
= sp(q, p)[s/q, p) + 1] == n/q, p). (9.2) 

The other turns out to be 

(c/>t(q, p)c/>(q, p)c/>t(q', p')c/>(q', p'»p 

= niq, p)n/q', p') + b(q - q/)b(p - p')niq, p). 

(9.3) 

When Eqs. (9.3) and (9.4) are substituted into Eq. 
(9.1), the latter equation becomes 

(
y(P) ox(q) • i _ x(q) oy(p) • i) n(q, p) 

oq op op oq 

= f3n(q, P)fdql dp' (Pl. ox(q') yep') 
m oq' 

_ ou(q') • oy(p') x(q/»)n(q', p') 
oq' op' 

+ f3(P' • ox(q) yep) _ ou(q). oy(p) x(q»)n(q, p). 
m oq oq op 

(9.4) 

Equation (9.4) must hold for any choice of x(q) and 
y(p)-provided, however, that x(q) has compact 
support and that both functions are differentiable and 
that S dpy(p) is finite. By choosing a point (q, p) 

where ox/oq = oy/op = 0, we find that 

f
aq, dp' (Pl. ox(q') yep') 

m oq' 

_ ou(q') • oy(p') X(q'») n(q', p') = 0 (9.5) 
oq' op' 

for every admissible x(q) and yep) whose derivative 
vanishes somewhere. Using Eq. (9.5), we may separate 
Eq. (9.4) [which holds for arbitrary choice of x(q) 
and yep)] into 

- -:,0 np(q, p) = f3.£. np(q, p), (9.6) 
up m 

o ou(q) 
oq np(q, p) = -f3 aq np(q, p). (9.7) 

The last pair of equations are readily solved to yield 

n/q, p) = A exp {-f3[(p2f2m) + u(q)]}. (9.8) 

The remaining check is to determine whether the last 
form that np(q, p) must take actually satisfies Eq. (9.5) 
and whether the thermal equilibrium condition 
Eq. (8.5) is satisfied also for arbitrary choices of U 
and V. These checks are left to the reader. 

Two remarks are pertinent in closing. 
(1) For the treatment of the present section, it 

was essential to consider a single-particle Hamiltonian. 
It was not essential, however, to give it a particular 
form. We could have more generally found 

niq, p) = A exp [-f3h1(q, p)] (9.9) 

by following the same procedure. 
(2) Although niq, p) is determined uniquely, 

siq, p) is not. Equation (9.3), connecting s/q, p) with 
niq, p), is quadratic and admits two solutions: 

s/q, p) = l ± [t + niq, p)]!. (9.10) 

These characterize two different representations of 
the creation and annihilation operators that describe 
the same physical situation. 
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In this paper we compute the single-particle Green's function for a system of N-interacting fermions in 
one dimension. The problem is exactly soluble in the case of a <5-function potential. We consider also 
the case of a small modification to a <5-function potential and we compute the Green's function up to first 
order in a perturbation expansion. In both cases we find that the Green's function has a branch cut in the 
complex energy plane but it has no single-particle poles. 

INTRODUCTION 

SOME years ago, Luttinger1 proposed an exactly 
soluble model for a system of N interacting 

fermions in one dimension. Later, Mattis and Liebs 

reconsidered the problem. Finding that the solution 
given by Luttinger was incorrect, they were able to. 
give an exact solution in terms of boson-like collective 
excitations. They calculated the spectrum, the free 
energy, and the dielectric constant and verified the 
existence of a nonanalyticity at the Fermi surface. 

A different kind of information can be obtained 
through the calculation of the Green's functions of the 
model. As is very well known,3 the poles of the single­
particle Green's function in the complex energy plane 
determine the spectrum of the elementary excitations. 

In the present paper, we compute the single-particle 
Green's function for Luttinger's Hamiltonian, ex­
pressing it explicitly in terms of the collective plasmons 
modes of Ref. 2. Due to the exact diagonalization of 
the Hamiltonian, the calculation can be carried 
through exactly, and ,the result is expressed as a 
function of the arbitrary potential Vex). 

In the limit Vex) = b(x), Luttinger's model 
becomes relativistic and coincides with Thirring's 
model' of a two-dimensional field theory. Hence, it is 
not surprising that our result coincides with the 
single-particle Green's function for the Thirring 
model, computed by Johnson,6 when we replace our 
general potential by a b-function potential. 

We show in Sec. 2 the general result and in Sec. 3 
the exact relationship to Johnson's solution. In Sec. 

• This research is partially sponsored by U.S. Air Force Office of 
Scientific Research, Office of Aerospace Research Grant AFlO7566 
and National Science Foundation Grant GP 6058. 

1 J. M. Luttinger, J. Math. Phys. 4, 1154 (1963). 
• D. C. Mattis and E. H. Lieb, J. Math. Phys. 6, 304 (1965). 
8 A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinsky, 

Quantum Field Theory in Statistical Physics (Prentice-Hall, Inc., 
Englewood Cliffs, N. J .• 1963). 

4 W. Thirring. Ann. Phys. (N.Y.) 3. 91 (1958). 
6 K. Johnson, Nuovo Cimento 20, 773 (1961). 

4 we compute the modification to the Green's function 
for a potential that differs slightly from a b function, 
in first order in a perturbation expansion. 

We find in both cases that the single-particle Green's 
function is analytic on the complex energy plane 
except for a branch cut along the real axis. The 
absence of complex poles is remarkable, showing that 
the system has a discontinuous behavior when the 
interaction is switched on, regardless of the actual 
value of the coupling constant. 

1. GENERAL EXPRESSION FOR G(x, t) 

To start, we recall some of the results in the work of 
Mattis and Lieb. From now on we refer to this paper 
as ML. The system is initially considered to be 
enclosed in a one-dimensional "box" of length L. 

'V'(x) is a two-component, one-dimensional fermion 
field, 

where 

{a;k' ai'k'} = 0 = {atA" , atd, 
{a ik , ah,} = b;;o(jkk" 

PI( + p) = ! aik+paIk' 
k 

Ps( + p) = ! atkHa2k' 
k 

PI( - p) = ! aikaIk+P' 
k 

P2( - p) = ! atka2k+p , 
k 

H = Ho + H =! (aikalk - atka2k)k 
k 

(Ll) 

(1.2) 

(1.3) 

Making a canonical transformation to particle-hole 

2460 
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language, the former expressions can be written 

a 
_ {bk k ~ 0 {bk k < 0 

lk - + k 0 a2k = 
Ck < ct k ~ 0 

H = I \k\ (btbk + CtCk) 
k 

v(p) = real, even function of p. (1.5) 

It was proved in ML that the commutators of the 
Pi(P) do not vanish identically, but satisfy the rela­
tions 

[Pl(-P), Pl(P')] = [P2(P), P2(-P')] = (pL/27T)~7>1'" 
[Pl(P), P2(P')] = 0, (1.6) 

[Ho, Pl(±P)] = ±PPl(±p), 

[Ho, P2(±P)] = =F ppl±p)· 
(1.6a) 

It is possible to define a boson field that satisfies 
the canonical commutation relations 

oc+(p) == (27T/pL)i p1(p), oc(p) == (27T/pL)i p1(_p), 
P+(p) == (27T/pL)i p2( -p), pep) == (27T/pL)i p2(p). 

(1.7) 

We refer the reader to the original paper for more 
details of the diagonalization of H. What is important 
for us to know is that after performing the canonical 
transformation: 

where 

S = i L q;(p)[oc+(p)P+(p) - oc(p)P(p)]. (1.8) 

H is brought to diagonal form 

H2 = L p(Op[oc+(p)oc(p) + P(p)P(p)]; 
p>o 

(Op = sech 2q;(p). (1.9) 

The vacuum renormalization energy has been 
subtracted out. The boson operators transform 
according to 

eiSoc+(p)e-iS = oc-t-(p) cosh q;(p) + P(P) sinh q;(p), 

eiSp(p)e-iS = P(P) cosh q;(p) + oc+(p) sinh q;(p). 

(LlO) 

q;(p) is related to the Fourier transform of the potential 
through 

tanh 2q;(p) = -AV(p)/7T. (1.11) 

The one-particle Green's function is defined by the 
relation 

G(X, t) = -i(<PH\ T"PH(X, t)"Pt(O) \<PH) 

= -iO(t)(<PHI"PH(X, t)"Pk(O) I<PH) 

+ iO(-t)(<PHI"Pk(O)"PH(X, t) \<PH}, 

{
I t ~ 0 

OCt) = , (1.12) 
o t < 0 

I<1>H): true ground state == e-iS 1<1». 
1<1»: noninteracting ground state, filled with b par­

ticles from -kF to kF' 

"PH(X, t) = eiHt"P(x)eiHt, 

oc(p) 1<1» = pep) I<P) = 0, (1.13) 

"PH"Pk = "PlH"PiH + "P2H"PtH' 

The system is symmetric in k and - k and the 
field "Pl(X) represents "particles" for k > 0 and the 
field "P2(X) represents particles for k < 0, thus we 
need only compute 

G1(X, t) = -i(<1>HI T"PIH(X, t)"PtH(O) I<1>H)' 

Let us consider the function 

A(x, t) = (<1>HI"PlH(x, t)"PtH(O) \<1>H) 
= (<1>1 eiSeiHt"Pl(x)e-iHt"Pt(O)e-iS 1<1» 

= (<1>1 eiHnteiS"Pl(x)e-iSe-iHnteiS"Pt(O)e-iS 1<1». 

(1.l4) 

Expressions of the type eiS"P} (x )e-iS were computed 
in ML, Sec. S. The result is 

eiS"Pl(x)e-iS == "Pl(X) exp [Q+(x) - Q(x)] 

= exp [Q+(x) - Q(X)]"Pl(X), (LlS) 

Inserting (15) into (14) we find 

A(x, t) = (<PI e iHnt"Pl(X) exp [Q+(x) - Q(x)] 

x exp [- iH Dt] exp [Q(O) - Q+(O)]"PiCO) 1<1» 

= (<1>1 eiHnt"Pl(X) exp [- iHpt] 

x exp [Q+(x, t) - Q(x, t)] 

x exp [Q(O) - Q+(O)]"PtCO) 1<1», (1.17) 

x {sinh q;(p )ip(a:+"'~t) P(p) 

-[cosh q;(p) - 11e-iP("'--<Il~t)oc+(p)}. (1.18) 
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Considering that 

eA+B = eAeBe-t[A,B] if [A, fA, B)J = [B, [A, BJ] = 0, 

we have 

exp [Q+(x, t) - Q(x, t)] exp [Q(O) - Q+(O)] 

= exp [Q+(x, t) - Q(x, t) + Q(O) - Q+(O)] 

x exp t[Q+(x, t) - Q(x, t), Q(O) - Q+(O)] 
and 

A(x, t) = (<PI iHnt"Pl(x)e-iHnt 

where 

X exp [Q+(x, t) - Q+(O) - Q(x, t) + Q(O)] 

X "Pt(O) I<P) • exp {i 1m R(x, tn, (1.19) 

R(x, t) = [Q+(x, t), Q(O)] 

= - ~ 27T {sinh2 pep) exp [ip(x + w1't)] 
1'>0 pL 

+ [cosh pep) - 1]2exp [-ip(x - w1't)]}. (1.20) 

In the same way as before 

eiHDt"Pl(x)e-iHnt = eiHot"Pl(X) 

X exp rift + rex, t) - P(x, t)J exp (- iHot), 

'" 27T r = £., - (w1' - 1), 
1'>0 L 

(1.21) 

l 
rex, t) = - ~ 2i(27T) sin fP(W1' - 1)t 

1»0 pL 

X exp [ -iP(X _ w1';- 1 t) }+(P), (1.22) 

eiHDt"Pl(x)e-iHDt = eiHot"Pl(x)e-iHot 

X exp [irt + A+(x, t) - A(x, t)], 

A+(x, t) = eiHotpf-(x, t)e-iHot 

= _ ~ 2i(27T )l sin lP(w1' - 1)t 
»>0 pL 

X exp {-p[x -!(w1' -I)t]) 
because 

eilIotr;'+(p)e-iHot = ei1't\l.+(p). 

Looking at (16), we can see that 

Q+(x, t) = Q~(x, t) - Q~(x, t), 

(
27T)t Q~(x, t) = ~ - [cosh pep) - 1J 

v>o pL 

X exp [-ip(x - w1't)J\I.+(p). (1.23) 

It was proved in ML that the state I<P) can be con­
sidered a product state I<P,,} I<Pp}. Since the (J operators 
commute with \I. and au, we move them to the edges 

of A(x, t) and let them act on I$p}. 

eQPI<Pp) = l<Pp), (<Ppl eQ/ = (<Ppl. 
One must be careful to take into account the fact 

that [Qp, Qt] ;;6 0: 

exp [Qt(x, t) - Qt(O) - Qp(x, t) + Qp(O)] 

= exp [Q~(x, t) - Q~(O)J exp [-Qp(x, t) + QP(O)] 

X exp URp(O) - Re Rp(x, t)} 

From (1.20) we have 

Rp(x, t) = - ~ 27T sinh2 p(p)ei1'(a:+",,,tl. (1.24) 
1'>0 pL 

Introducing Eqs. (1.21)-(1.24) into Eq. (1.19) we 
obtain 

A(x, t) = (<P",I eilIot"Pl(x)e-iHot exp [A+(x, t) - A(x, t)] 

X exp [-Q~(x, t) + Q~(O) + Q"(x, t) - QaCO)] 

X "Pt(O) I<P,,) 
X exp {Rp(O) - Re Rp(x, t) + irt + i 1m R(x, t)} 

(1.25) 
ana 

A(x, t) = (<Pal "PlO(X, t)eF+(:I),tle-F(:I).t)"Pio(O) I<P",> 

X exp rift + i 1m R(x, t) + i 1m U(t) - i 1m Vex, t) 

- W(x, t) + Rp(O) - Re Rp(x, t)}, (1.26) 

where 

"PIO(X, t) = eiHot"Pl(x)e-iHot = ~ eik(:I)-t)a1k, (1.27) 
k 

U(t) = [A(x, t), Q~(x, t)] 

= ~ 2i 27T sin lp( W1' - l)t 
1'>0 pL 
X [cosh pep) - l]e"h1'(",,,-llt, 

vex, t) = [A(x, t), Q~(O)] 

= ~ 2i 27T sin b(w1' - 1)t 
1'>0 pL 

(1.28) 

X [cosh pep) - l]eiv[.,.....l«(Q,,+l)t], (1.29) 

F(x, t) = ~ (27T)t {2i [sin tp(wp _ l)t]eiP[:I)-t(~l)t] 
p>O pL 

+ [cosh pep) - 1][1 - ei1'(:I)-ro"tl]}\I.(p) 

= ~ F»\I.(p) , (1.30) 
»>0 

2W(x, t) = [F(x, t), F+(x, t)] 

= ~ 2 27T {I - cos p(w» - 1)t 
»>0 pL 

+ [cosh pep) - 1][- cos p(x - w»t) 

+ cos p(x - t) + 1 - cos p(w» - l)t] 

+ [cosh pcp) - 1]2[1 - cos p(x - wvt)J}. (1.31) 
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Finally, from (1.30) and (1.27) 
i 

["PIO(X, t), F+(x, t)] = "PIO(X, t) .2 F :Ilei:ll(~tl (21T) , 
7»0 pL 

A(x, t) = (<D,,\ "PI0(X, t)"Pio(O) I<D .. > 

x exp {irt + i 1m R(x, t) + i 1m U(t) + RP(O) 

- Re R(x, t) - i 1m Vex, t) - W(x, t) 

+ .2 F:IleiP(ilJ-tl(21T)* -.2 F:Il(21T)!}, (1.32) 
P pL P pL 

and if we call 

Replacing v(p) == 1 in Eq. (1.11) we obtain 

tanh 2p(p) = -l/1T, (2.2) 

Wv = sech 2tp{p) = [1 - (l2/ 1T2)]! = 0, (2.3) 

cosh2 tp(p) = Ucosh 2p(p) + 1] = (1 + 0)/20, (2.4) 

sinh2 pep) = Hcosh 2p(p) - 1] = (1 - 0)/20. 

Introducing Eq. (2.3) and (2.4) in Eq. (1.34) and 
replacing 

-.2 by dp, 21T foo 
Lv>o 0 

(<D"I "PIO(X, t)"Pto(O) I<D .. > = Ao(x, t), 
A(x, t) = Ao(x, t) exp [Z(x, t)], 

(1.33) Z(x, t) = 1 + 0 [00 .! ei:ll(%-fit) dp 
20 Jo p 

Z(x, t) = - £., - e'VilJ[coshQ tp(p)e-'tJC)p - e-':Il] 21T "" 1 { . n 't . t 

L pop 

+ sinh2 p{p)exp [-ip(x + wpt)]} 

41T "" 1 . h2 () --£.,-stn tpp 
L :1»0 P 

- i 21T .2 !. sin p(w:Il - l)t + irt. (1.34) 
L :1»0 P 

The expression A{x, 0) = Ao{x, 0) exp [Z(x, 0)] co­
incides with the similar expression l(s - t) = lex) 
of ML, Sec. 5. 

It is easy to see, following the same steps as before, 
that 

B(x, t) = (<DHI "PiH(O)"P1H(x, t) !<DH) 

= exp [Z+(x, t)](<DHI "PiOH(O)"PIOH(X, t) I<DH) 
= exp [Z+(x, t)1Bo(x, t). (1.35) 

Thus, in (12) 

G1(x, t) = -iO(t)A(x, t) + iO( -t)B(x, t) 
= -iO(t)eZ(ilJ,t1Ao(x, t) + iO( -t)ez+h"tlBo(x, t). 

(1.36) 

At this point, if we recall that Wp and pep) depend 
on the interaction potential v(p), we can see that it is 
impossible to obtain any information from G(x, t) 
without being more explicit about the interaction. 
However, we can anticipate by looking at (1.34) 
that the different exponential terms give rise to an 
infinite series of poles on the real energy axis which in 
limit L -+ 00 coalesce forming a branch cut, while there 
are no single complex poles, that is, there are no single 
particle excitations. We show in the next section that 
this result is confirmed in the case of a <'>-function 
potential. 

2. c5-FUNCTION POTENTIAL 

v(p) = L:v(x)e-iVilJdx = I: d(x)e-il"lldx = 1. (2.1) 

+ 1 - n roo e-ill(Q:Hlt).! dp _ r;() ei:P(ilJ-t)! dp 
20 Jo p Jo p 

- -- -dp - i sin [p(O - l)t] -dp 1 - 0100 

1 100 

1 
o 0 pop 

+ it Iooo (0 - 1) dp. (2.5) 

The integrals appearing in Z(x, t) are highly 
divergent, but we are able to separate out the diver­
gencies, as usual, and to concentrate the divergencies 
into an infinite renormalization constant. 

Considering a general integral of the type 

1= ei!J.P-dp, 1
00 1 

o p 

we can integrate by parts to separate the divergence at 
p = 0 and we can introduce a small imaginary part 
to I-' to make it convergent when p -+ 00, 

f
oo ' 1 . foo '( +'E) 1 1= e'!J.v-dp = hm e'p.· v-dp 

o p <-+0 0 p 

= lim [eiM'e-Elllog (p)]:' 
<-+0 

- lim (I-' + ie) roo ei(p.Hf)Plog (p) dp. (2.6) 
<"'0 Jo 

In the following, we suppress the expression lim. 
Since £~ 

lim r V £ log (p) = 0, 

therefore, the first term in (2.6) contributes an infinite 
constant log (0): 

roo e-(Hp.)V log (p) dp = __ 1_. [y + log (€ - il-')] 
Jo € - II-' 

- 1.. [y + log (-il-')], (2.7) 
il-' 

where y is Euler's constant. 



                                                                                                                                    

2464 ALBA THEUMANN 

Our complete expression thus becomes 

L
oo. 1 

1= eW ' - dp = log (0) - [y + log (-i.u)). 
o p 

(2.8) 

Performing in this way the remaining integrals, in 
(5), we find 

Z(x, t) = 1 - Q log (0) - i:!!. + irt . a 2 

+ I (x - t) (2 9) 
og [(x _ Ot)H1+o)/20](X + 0t)[(1-0)/2O]] . . 

In this expression r is an infinite constant = 
i: (.0 - 1) dp which gives rise to a uniform contri­
bution to the energy and 

f" sinp(O - l)t l dp = ~ sgn [(0 - 1)/]. 

From Eq. (1.33) we have 

A(x, t) = - iZoeirtAo(x, t)(x - t) 
x [(x - .oti1+0l/2O(X + .ot)(1-nl/2I1J-1 

where 
Zo = exp [(1 - .0) log (O)/.oJ (2.10) 

• eikpb:-t) 

=1---. 
(x - t) 

(2.11) 

Introducing Eq. (2.11) into Eq. (2.10) and sup­
pressing for simplicity Zo and r we have 

A() exp [ikF(x - t)] O( ) 
x, t = (x _ .ot)<1+nl/2ll(x + .ot)(l-fIl/2ll t 

(2.12) 

Bo(x, t) = roo dk roo dw O(k - kF~ eik"e-iwt 

J-oo J-ro w - k - IE 

= i exp [ikp(x - t)JO( -t)/(x - t). (2.13) 

From Eqs. (2.9) and (2.13), the expression for 
Gl(x, t) in (1.36) becomes 

G . _____ ~ex~p~[~ik~F~(X~-~t)~J __ __ (x t) - I 
1 , - (x _ .ot)(I+!l)/2Il(x + .ot)(1-11)/2Il ' 

expressed in the form 

G(k )=2-PijOOd exp[-iu(k-iV)] 
1 ,w 4 A U P-l 

.I.,/; -00 u 

Jooexp [-iv(k + w)] d 
x (J v, 

-00 v 

k = k - kp , iV = (w - kp)/.o. (2.15) 

The integral (2.15) is highly divergent and does not 
have any meaning in terms of ordinary functions. 
However, like other divergent expressions in field 
theory, it arises because we are actually dealing with 
generalized functions or "distributions." 6 In the 
language of Ref. 6, each one of the integrals in (2.15) 
is a linear combination of Fourier transforms of the 
distributions xi and x~ . 

That is, 
G1(k, w) 

= i 2
2P

[ roo due-isuul-P + (_ )l-pio 
lull-Pe-iBu dU] 

4.0 Jo -<Xl 

X [100 

v-Pe-irv dv + (- )-P f~oolvi-Pe-irv dvJ 

22/1 
= i - [F8(U~-P) - e77iPF.(u:"-fl )] 

4.0 

x [FrCv:tP) + e1fiPFiv:p
)], 

where 
s = k - iV, 

r = k + iV. 

F.(x~) = lim roo x"e-i'''e-rll! dx 
7-0+ Jo 

= ieuh-rcl + 1)(s + iO)-.. -l 

F.(x!:.) = li~ JO Ix I "e-is"e-r" dx 
T-O -00 

(2.16) 

= -ie-i;.!ur(A, + 1)(s - iO)-"-I. (2.17) 

Using (2.17) and (2.16) becomes 

G1(k, w) = (22fJ/.o)e77iP sin2 1TfJr(2 - fJ) 
X r(1 - fJ)SP-2rP-1, 

r(1 - z)r(z) = (sin 1TZ)-l. (2.18) 

As we predicted, G1(k, w) has a branch cut in the 
(2.14) complex energy plane but has no other singularity. 

Introducing the new variables u = !(x + .ot); v = 
!(x - .ot), the integral (14) can be separated and 

• 1. M. Gel'rand and G. E. Chilov, Les Distributions (Dunod 
Cie., Paris, 1962), especially Chap. 2. paragraph 2. Also E. C. 
Titchmarsh, Ed., The Theory of Functions (Oxford University Press, 
New York, 1939), in the regularization of the function rcA). 
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We therefore conclude that our system does not 
contain single-particle excitations in its energy 
spectrum. 

Now it is very simple to compare Eq. (2.19) with 
Eq. (37) of Ref. 5. We can see that both expressions 
agree if we make the identifications 

Po = w = (w - kF)/n, Pl = k = k - kF' 
0: = (3 - 1, r(2 - (3) = (1 - fJ)! = -o:!, 

r({3) = ({3 - I)! = o:!. 

The denominator po - Pl = [y. p]21 results from 
considering the Green's function (lPHI TW1HWiH IlPH) 
and making use of the' identities wlwi = iWlipa 
because W+ = (iipa - iipJ. We have used the same 
set of y matrices as in Ref. 5: 

o (0 -i) 1 (i 0) . Y = 0'2 = i 0' Y .... 0 i = 10'1' 

The dependence of 0: on the coupling constant A is 
slightly different than that in Johnson's work. We 
are unable at this moment to give a reason for the 
difference. 

3. DEVIATION FROM A 8·FUNCTION 
POTENTIAL 

In this section we are interested in the structure of 
the Green's function in the case that the interaction 
differs from the d-function interaction. 

We compute the first-order correction to G(x, t) 
for the potential 

Vex) = d(x) + (p,/A)Vl(X), where v1(x) = sin x/x, 

{
I Ipi ~ 1 

vCp) = 1 + (fl/A)V1(p), v1(p) = 0 Ipi > l' (3.1) 

According to the previous sections, G(x, t) can be 
expressed in the form 

G(x, t) = GoCi;, t)eZ(I'.a:.tl, (3.2) 
where 

eiIcF(a:-tl 
Go(x, t) = i (3.3) 

(x - t) 
and we have made the dependence of Z on fl explicit. 

From Eq. (1.34) the expression for Z(fl, x, t) is 

Z(p" x, t) 

= ("'cosh\! <p(p)ei 2>a:e-i2>W"t.! dp 
Jo p 

+ ('" sinh2 <p(p)e--i2>a:e-i2>W"t! dp 
Jo p 

+ it f'" (W2> - 1) dp _ (a:> ei 1>(a:--t)! dp 
Jo Jo p 

_ 2 fa:> sinha <p(p)! dp + i (a:> sin p(W2> - l)t dp, 
Jo p Jo P 

(3.4) 

tanh 2<p(p) = -(A/17)V(p), 

w1> = sech 2<p(p) = {I - [AV(p)/17]2}!, 

cosh2 <pep) = (1 + w1»/2w1> ' 

sinh2 <pep) = (1 - w2»/2w2>' 

Reordering terms in Eq. (3.4), 

Z(fl, x, t) 

La:> e-i2>OJ"t 1 l'" . 1 = cos px -- - dp + i sin pxe-t1>OJ.t_ dp 
o W1> pop 

l '" i1>(a:-t) 1 d l'" 1 - W1> 1 d - e - p- --- p 
o p 0 W2> P 

- Joo sin p(l - w2»t 1: dp + it fa:>(w2> - 1) dp, Jo p Jo 
(3.5) 

G(fl, x, t) = G(O, x, t) + I!:..[~J + ... , 
A (J(fl/ A) 1'/).=0 

~ = G eZ(I' • ."t) ~ 
(J(fl/A) 0 (Jefl/A) , 

[ 
(JZ ] [ (JZ (Jwp ] (3.6) 

(Jefl/A) 1'/),=0= (Jw2> O(fl/A) 1'/).=0' 

[ 
(Jwp ] __ ~Vl(P) 

(Jefl/A) 1'/),=0- 17 0. ' 

(3.7) 

- it - cos p(l - nt) dp + it - dp, All IIA 
170. 0 0170. 

[ 
(JZ ] A II ei2>(a:-Otl + e-i1>(a:+Ot) - 2 
-- =-- dp 
(Jefl/A) 1'/).=0 2170.3 0 P 

A A { ei(a:-Ot) 
+ it 217 + 2170.2 t (1 + 0.) (x _ nt) 

e-i(a:+Ot) 2} 
+ (0. - 1) (x + nt) - (x _ nt) 

- i A sin (1 - n)t, (3.8) 
170.(1 - 0.) 
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ft 100 

weft, k, (1) ~ G(O, k, (1) + - dx 
A -00 

x dt -- . 1
00 e-ikilJeiwteikp(:x;-tl [OZ ] 

-00 (x - D.t)lI(x + D.t)p-1 O(ft/A) /l1).~0 

Changing variables as in (2.14), 

e-ikilJeiwteikp(ilJ-t) 2 e-iup e-iv, 

----::------,:- := - ---- , 
(x - D.t)lI(x + D. 1)11-1 211 ull- 1 vII 

U :;:: t(x + D.t), v = t(x - D.t), (3.10) 

P = k - kF - [(01 - kF)/D.], 

..,. = k - kF + [(01 - kF)/D.], 

[
OG(P, k, (1)] 

o(pIA) /l1).=0 

1 100 100 

e-
iUP 

e-
iVT 

=- du dv----
211 D. -00 -00 ull- 1 vP 

X -- dp+-- dp {
it Jl e2iV

'P - 1 A II e-2iuP 
- 1 

21TD.3 
0 P 21TD.3 

0 p 

+-(u - v) (D. + 1)- +(D. -1) --it [ e
2iV 

e-
2iU 1] 

21TD.3 2v 2u v 

- it [exp [i (1 - D.) (u - V)] 
21TD.(D. - 1) D. 

- exp [ _/1 ~ D.) (u - V)]l + i 2:D. (u - v»). 
(3.11) 

We now have to evaluate integrals of the following 
type: 

1 =foo duf"" dv e~:: e-:VT 

(I e2ipv 

- 1 dp. (3.12) 
-00 -00 u v Jo p 

Interchanging the order of integration we have 

Jl 1 foo e-iup foo e-iV (T-2p) - e- iVT 

I = - dp -- du dv 
o p -00 ull- 1 

-00 vP , 

which according to the considerations of Sec. II, is 
equal to 

J
l ( 2 )11-1 ..,.P-l 

I = Cpfl-2 ..,. - P - dp. (3.13) 
o p 

The evaluation of the rest of the integrals is now 
straightforward. 

The result is 

G(/l, k, (1) 

~ G(O, k, (1) + (/l/A){C1plI- 2F(..,./2, fJ - 1) 

+ c2..,.P-1F( - p/2, fJ - 2) + capfl-3(..,. - 2)11 
+ cip + 2)11-2..,.11-1 + cspfl-3..,.P + c6pll-2(..,. - 2)p-l 

+ c7(p + 2)11-1..,.11-2 + cs(p - 2fJ + 2)11-2(" + 2fJ - 2)11-1 

+ c9(p + 2fJ - 2)11-2(..,. - 2fJ + 2)11-1 + CIOpfl-3,,1I-1}. 

(3.14) 

The c m are numerical constants depending on the 
coupling strength A, which originate in the evaluation 
of integrals similar to (2.16). 

The function F(z, v) is defined by the integral 

F(z, v) = t (z - t)' - ZV dt, (3.15) 
Jo t 

which in the region Izi < 1 has the expansion 

F(z, v) = f (_ y-m v(v - 1) ... (v - m + 1) zm . 
m=O V - m m! 

If we write v = -a, the coefficient of zm is 

b
m 

=v;,..:(,:..,v _-_1::.!.)_· _. ~. (,:..,v _--.:m~+~l)~C _~y_-m 

v - m 
= a(a + 1) ... (a + m - 1) (_ )m( - t-a-m 

a + m (-) 

b
m 

= rea + m). rea + m) 
rea) rea + m + 1) 

(3.16) 

= ! {rca + m) rCa + m) rea + 1) }. (3.17) 
a r( a) r( a) rCa + m + 1) . 

Thus, substituting Eq. (15) into Eq. (14) we find 

F(z, v) = F(z, -a) = ! (_ )a-l 
a 

X Lr(a + m)r(a + m) rca + 1) zm 
m rCa) rea) rea + m + 1)m!' 

which coincides with the hypergeometric series7 

( t-1 

F(z, v) = F(z, -a) = -=- Fea, a, a + 1, z) 
a 

(-y 
= - F( -v, -1', -v + 1, z). (3.18) 

v 
We see that, even in the case of a more general 

potential, G(k, (1) has a cut along the real axis in the 
complex energy plane. This branch cut is the only 

7 Bateman Manuscript Project, Higher Transcendental Functions, 
A. Erdelyi, Ed. (McGraw-Hill Book Company, Inc., New York, 
1953), Vol. I. 
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singularity of G, confirming our earlier discussion 
concerning the energy spectrum of our system. 

4. CONCLUSIONS 

The absence of single-particle excitations in the 
one-particle Green's function, shows that the collective 
boson excitations completely determine the spectrum 
of the system. 

It was also shown that the solution to the problem 
of interacting fermions given by Mattis and Lieb 

coincides with the solution of the relativistic Thiring 
model in the case of a c5-function potential. 
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The Half-Space Green's Function for an Atmosphere with a 
Polarized Radiation Field* 
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This paper presents a rigorous solution for the half-space Green's function of the matrix transport 
equation that describes the flow of polarized radiation in a free-electron atmosphere. The singular 
normal modes expansion technique is used to construct the solution in such a manner that the expansion 
coefficients can be determined by applying the proper boundary conditions. The necessary completeness 
and orthogonality theorems are proved, and thus all expansion coefficients are found by simply taking 
scalar products. In addition, the albedo problem for a semi-infinite half space is solved explicitly. 

I. INTRODUCTION 

I N a recent paper, hereafter referred to as I, Siewer 
and Fraley found the set of normal modes to the 

homogeneous matrix transport equation for the 
radiative-transfer problem in a free-electron atmos­
phere.! Also in I: the half-range completeness 
theorem was proved, the half-range adjoint functions 
were presented, the half-range normalization integrals 
were calculated, and the classical Milne problem was 
solved. The technique used by Siewert and Fraley was 
based upon Case's method of singular eigenfunctions 
that was developed for problems in one-speed neutron 
transport theory.2.3 The formulation of the matrix 
transport equation, as given by Chandrasekhar, was 
reviewed briefly in 1.4•5 In addition, Kuscer and 

• Based on part of a Ph.D. thesis to be submitted by one of the 
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singularity of G, confirming our earlier discussion 
concerning the energy spectrum of our system. 

4. CONCLUSIONS 

The absence of single-particle excitations in the 
one-particle Green's function, shows that the collective 
boson excitations completely determine the spectrum 
of the system. 

It was also shown that the solution to the problem 
of interacting fermions given by Mattis and Lieb 

coincides with the solution of the relativistic Thiring 
model in the case of a c5-function potential. 
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step in the construction of the half-space solution. This 
same procedure has been used for other physical 
models.ll,12 

In Sec. II we briefly review the cogent results 
formulated in I. In Sec. III, the necessary full-range 
completeness theorem is proved, since it is needed for 
the determination of the pseudo infinite-medium 
Green's function. Section IV is devoted to the full­
range orthogonality theorem and the calculation of 
the full-range normalization integrals. Finally, in 
Sec. V the half-space Green's function and the albedo 
problem are solved explicitly. 

II. THE NORMAL MODES OF 
THE BASIC EQUATION 

The equation that mathematically describes the 
scattering of radiation in a free-electron atmosphere 
may be written in matrix notation as1,4: 

11 ~ 'l'(x, 11) + 'l'(X,I1) = 1. il X(I1, 11')'l'(X, 11') dl1', ax 2 -1 

(1) 
where 'l' is a vector whose two components represent 
the parallel and perpendicular states of the polarized 
radiation field. The transfer matrix is 

X(I1, 11 ) = ! , 
, [2(1 - 11'2)(1 - 112) + 11'2112 112J. 

11'2 1 
(2) 

x is the optical distance measured in units of the 
Thomson scattering coefficient, and 11 is the direction 
cosine measured from the inward normal to the free 
surface.13 

In order to separate the variables in Eq. (1), we seek 
solutions of the form 

(3) 
This ansatz leads to the following equation for the 
determination of «1»(1], 11): 

(1] -11)«1»(1],11) = '1 il X(I1, 11')«1»(1], 11') dl1'. (4) 
2 -1 

Siewert and Fraley found the solutions of Eq. (4) 
to bel: 

(Sa) 

[

31] (1 - 112) ~ + A,1(1])t5(1] - I1)J 
«1»1(1],11) = 2 1] - 11 , 

° 1]E[-l,l], (5b) 
11 c. E. Siewert and P. F. Zweifel, Ann. Phys. (N. Y.) 36, 61 (1966). 
12 N. J. McCormick and I. Kwcer, J. Math. Phys. 6, 1939 (1965). 
13 We choose to measure the velocity vector from the inward 

normal rather than from the outward one in order that Case's 
method of normal modes may be directly applicable. 

and 

1]E[-1, 1]. (5c) 

In addition, they found a solution to Eq. (1) of the 
form 

'l' _(x, 11) = (x - 11)[: 1 (6) 

In Eqs. (5) and throughout this work, the symbol P 
denotes that integrals involving these functions are 
to be carried out in the Cauchy principal value sense. 
Also t5(x) is the Dirac delta function, 

A,1(1]) = -1 + 3(1 - 1]2)[1 - 1]T(1])], (7a) 

A,2(1]) = 1 + 3(1 - 1]2)[1 - 1]T(1])], (7b) 

and T(x) denotes tanh-Ix. 
Note that «1»+, «1»1 (1], 11), and «1»2 ( 1], 11) are solutions 

of Eq. (4); whereas, 'l'_(X,I1) is a solution only of 
Eq. (1). The complete solution to Eq. (1) can thus be 
written as 

'l'(X,I1) = A+ «1»+ + A_ 'l' _(x, 11) 

+ J~l cx.(1])«I»l(1], 11) e -X/fl dry 

+ fl(1])e- xtll «1»1(1] , 11) d1], (8) 

where A+, A_, cx.( 1]), and P( 1]) are arbitrary expansion 
coefficients. 

Since in later sections we will need it, we state the 
theorem proved in I regarding the half-range complete­
ness of the elementary solutions, Eqs. (5). 

Theorem I: The eigensolutions «1»+, «1»1 (1], 11), and 
«1»2(1],11) are complete on the half range, 11 E [0, 1], in 
the sense that an arbitrary two-component vector 
'l'(I1) defined for ° S 11 S 1 can be expanded in the 
form 

'l'(I1) = A+ «I» + + f cx.(1J)«I»I(1J,I1) d1J 

+ ffJ(1J)«I»2(1J, 11) d1J. (9) 
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Also in I: the half-range adjoint functions were found to be 

4Jt - [ YI(P,) ] 
+ - -Y2(p,)(a + bp,) , 

(lOa) 

t [YI(P,)[frJ(1 - rl) ~ + AI(77)b(77 - p,) + !77(C + 77)]] 
4JI (77, p) = 77 - P, , 

(151]/2b)ylp) 

(lOb) 

and 

where 

and 

YI(fJ) = p,[X+(fJ)/Q+(p,)], (lla) 

Y2(fJ) = p,[Y+(p,)/A+(p,)], (lIb) 

Q(z) = -1 + 3(1 - Z2)[1 - zT{l/z)], (Uc) 

A(z) = 1 + 3(1 - Z~)ll - zT(I/z)]. (lId) 

The auxiliary functions X(z) and Y(z) are given by 

X(z) = -- exp - arg Q+(.u) -p,-1 [Ill d ] 
z-l 71' 0 p,-z 

(12a) 

and 

Y(z) = exp [1 flargA+(p,)~J. (12b) 
71' Jo p, - z 

Also 
a = X(1)Y(-I) + X(-l)Y(1), (13a) 

b = X(1)Y(-I) - X(-l)Y(I), (13b) 
and 

C = X(1)Y( -1) + X( -l)Y(1) . (13c) 
X(I)Y( -1) - X( -l)Y(1) 

The half-range orthogonality theorem is stated. 

Theorem II: The eigensolutions 4J+, 4Jl (1], p,), and 
4J2(1], p,) have corresponding half-range adjoint 
solutions, 4Jt, 4Ji(1], p,), and 4Ji(77. p,), such that 

fci t (1]', p,)4J(1], p,) dp, = 0, 1] ¥ 1]', rJ and rJ' ~ O. 

(14) 

Here the superscript tilde denotes the transpose 
operation. Using the notation 

(i I j) = fwi(1]', p,)Wj (1], p,) dp" 

for i,j = +.1,2, (15) 

we list the results found previouslyl: 

where 

and 

(i jj) = 0 for i ¥ j, 

(+ 1+) = N+. 

(111) = 81(1])~(1] - 1]'), 

(21 2) = 82( 1])~( rJ - 1]'), 

(tOc) 

(16a) 

(16b) 

(16c) 

(I6d) 

(17a) 

8l77) = Yi(77)[A~(77) + 171'21]2(1 - rJ2)2J. (17b) 

These functions and their relationships will be 
useful in solving the problems described in a later 
section. 

m. FULL-RANGE COMPLETENESS 

We wish to prove the necessary 

Theorem III: The eigensolutions 4J+, 4JI(rJ, p,), 
4J2(rJ, p,), and 'I' _(0, p) are complete on the full-range, 
p, E [-1, 1], in the sense that an arbitrary two­
component vector 'I'(p) defined for -I ~ p ~ 1 can 
be expanded in the form 

'I'(p,) = A+ 4J + + A_ '1'_(0, p,) + f
l
CX:(1])4J1(1], p,) d77 

+ f!(1])4J2(77, p,) drJ. (18) 

We first investigate the feasibility of expanding an 
arbitrary function in terms only of the continuum 
solutions 4J1(1], p) and 4J2(1], p). For the theorem 
to be true, this procedure should lead to restrictions 
which can be removed only by adding to the expansion 
the discrete solutions 4J + and '1'_(0, p).14 Thus, we 
propose 

'I"C!-') = f
l
CX:(1])4J1(77, p) d77 + f!(rJ)WlrJ, p) d77, (19) 

14 Simmons has also developed full-range completeness and 
orthogonality theorems; however, in his formulation the eigen­
functions were not explicitly available, and thus the determination 
of the expansion coefficients does not follow as readily as here. 
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or, expanding in terms of the components, we find 

'Y;(P) = (l oc(n)[in(1 - p,2) ~ + A1(n)0(n - p,)] dn 
)-1 n - p, 

+ f/(n) [ -in(n + p,)] dn (20) 

and 

'Y~(p,) = (1 P(n)[i17(1 _ n2
) ~ 

)-1 n - p, 

+ A2(n)0(n - p,) ] dn. (21) 

The procedure will be to solve for P(n) from Eq. 
(21). Thus 

'Y~(p,) = P (1 i17(1 - n2
) P(n) dn + AJp,)P(p,). (22) 

)-1 n - p, 
Noting the form of A2(P) in Eq. (7b), we introduce the 
function 

A(z) = 1 + 3(1 - Z2)[1 - ~ (1 ~J (23) 
2 )-1 z -n 

and note that it is analytic in the entire complex plane 
cut on the real line from -1 to 1. Other important 
properties of A(z) that will be used later are 

A(l) = A( -1) = 1, 

lim A(z) = 2, 

and A(z) has no zeros in the complex plane cut 
from -1 to 1. Defining the boundary values, A+(z) 
and A-(z), to be the values of A(z) as z approaches the 
real line on the cut from above and below, respec­
tively, we obtain from Cauchy's theorem 

A±(n) = 1 + 3(1 - n2)[1 - nT(n) ± 7Ti!n]. (24) 

Thus, 

and 
A+(n) - A-(n) = 37Tin(1 - n2). (25b) 

We also define 

N 2(z) ~ ~ (In(1 - n2) P(n) dn, (26) 
2m )-1 n - z 

and observe that 
(a) N 2(z) is analytic in the complex plane cut from 

-1 to 1, and 
(b) N2(z) -- - Z-l as z -- 00. 

The boundary values of N 2(z) are 

N~(p,) = ~ p (In(1 - n2
) P(n) dn 

2m 1-1 n - p, 

Thus, 
± Hp,(1 - p,2)p(p,)]. (27) 

(28a) 

and 

1 Jl d Ni(P) + N;(p,) = ~ P nP(n)(l - n2) _n_ . 
7Tl -1 n - p, 

(28b) 
Substituting Eqs. (25) and (28) into Eq. (22), we 

arrive at the recognizable inhomogeneous Hilbert 
probleml5 : 

Nt(p)A+(/t) - N;(/t)A-(p) = p,(1 - li)'Y~(/t), (29) 

which has the solution 

N 2(z)A(z) = -. p,(1 - p,2) ~ dp, + P,lz), 
1 Jl 'Yt( ) 

27TZ -1 p, - z 
(30) 

where we have determined N 2(z)A(z) to within an 
arbitrary polynomial Pk(z). Noting the properties 
previously described for A(z), we find that the function 

N
2
(z) = _.1_ e p,(1 _ p,2) 'Y~(p,) dp, (31) 

2mA(z) )-1 /t - z 

does indeed have the properties derived from its 
definition in Eq. (26). Thus the polynomial of z 
required to meet our restrictions on N 2(z) is simply 
zero. 

Having determined N2(z) in terms of the arbitrary 
function, 'Y~(p,), we can evaluate P(n) from Eq. (28a). 

Now that P( n) is known, an attempt is made to 
determine oc(n) from Eq. (20). Thus 

'Y{(p,) = (l oc(nHn(1 - p,2) ~ dn 
)-1 n-p, 

where 
+ At(p,)oc(/t) - g(/t), (32) 

(33) 

The dispersion function 

Q(z) = -1 + 3(1 - z2)[1 - ~ (1 ~J (34) 
2 )-1 z -n 

has the properties: 
(a) Q(z) is analytic in the complex plane cut from 

-1 to 1, and 
(b) Q(z) -- Z-2 as z -- 00. 

The boundary values are given by 

Q±(p,) = -1 + 3(1 - p,2)[1 - ~ P (1 ~ ± 7T/~J. 
2 )-1p, - fJ 2 

(35) 
Thus, 

HQ+(p,) + Q-(/t)] = A1(/t), (36a) 
and 

Q+(p,) - Q-(p,) = 37Tip,(1 - p,2). (36b) 

15 N. Muskhelishvili. Singular Integral Equations (P. Noordhoff 
Ltd., Groningen, The Netherlands, 1953). 



                                                                                                                                    

HALF-SPACE GREEN'S FUNCTION 2471 

In the same manner used to solve for P(1J), we define 

1 11 "I N 1(z) = -. oc("I) -- d1J 
2m -1 "I - z 

(37) 

and note that it is analytic in the complex plane cut 
from -1 to 1 and vanishes as lIz as z -- 00. Also, the 
boundary values satisfy 

Ni(P) - N1(ft) = prt.(ft) (38a) 
and 

Nt(p) + N~(ft) = 1.. p r
1 

oc("I)"I ~. (38b) 
7T1 J-l 'YJ - ft 

Inserting Eqs. (36) and (38) into Eq. (32), we obtain 
another inhomogeneous Hilbert problem 

Ni(ft)Q+(ft) - N1(P)n-(ft) = p['Yi(p) + g(p)], (39) 

which has as its solutions, to within an arbitrary 
polynomial in z, 

1 II d N 1(z) = 2 ·n() ft['¥~(ft) + g(p)] _ft_. (40) 
7T1 z -1 ft - z 

In the limit as z -- 00, 

Z 11 N 1{z) -- - -2· !p['¥~(p) + g(p)] 
7T1 -1 

so that for N1{z) to vanish as lIz, which it must by 
its definition, the following must apply: 

and 

flft['Y~(P) + g(P)] dft = 0 (42a) 

(42b) 

Thus we cannot find oc( 'YJ) from the arbitrary 
function 'Y~(p) without the restrictions on 'Y~(p) that 
are indicated by Eqs. (42). To circumvent these 
restrictions, we assume that the arbitrary vector 
'I'(ft) can be expanded in terms of the continuum plus 
both discrete modes; i.e., 

'I'(p) = 'I"(p) + A+cIt+ + A_'I'_(O, p). (43) 

Writing Eq. (43) explicitly in terms of the components, 
we have 

'Ylp) = 'Y~(ft) + A+ - A_p, i = 1,2. (44) 

We can thus make use of Eqs. (42) to evaluate A+ 
and A_. The coefficients are found to be 

(45a) 

and 

3 ]1 A_ = - - pl'Y1(P) + g(p)] dft. 
2 -1 

(45b) 

The expansion coefficient oc( "I) may be determined 
from Eq. (38a) to complete the determination of the 
expansion coefficients for any given 'I'(p).16 The 
theorem is therefore proved. 

IV. FULL-RANGE ORTHOGONALITY 
AND NORMALIZATION 

The full-range orthogonality is stated as 

Theorem IV: The eigenvectors cIt+, clt1{1J, ft), and 
clt2(-q, p) are orthogonal on the full range with respect 
to the weight function ft, i.e., 

f/~("I"ft)cIt('YJ'P) dp = 0, "I ~ "I'. (46) 

The proof of this theorem follows in the usual manner; 
i.e., we write the eigenvalue equation for fJ and fJ' 
asH 

{1 - ~}cIt("I' ft) = ! II K(p, ft')cIt("I, p) dp (47a) 
"I 2 -1 

and 

{1-~,}cIt(1J"P)=! r\(ft,p,)cIt{"I',p)dft. (47b) 
fJ 2 J-1 

Multiplying Eq. (47a) from the left by -i(fJ', ft), 
transposing Eq. (47b) and then multiplying it by 
cit ( 'YJ, p) from the right, integrating over p from -1 
to 1 and subtracting the two equations proves the 
theorem immediately; i.e., 

{! _1,}]1 p-i(fJ',p)cIt(fJ,p) dp = o. 
fJ "I -1 

(48) 

Here we have made use of the fact that 

x(p, p') = K(ft', p). 

In this orthogonality theorem, we might expect 
that there would be a minor complication introduced 
by the fact that clt1(1J, p) and cit 2 ("I , p) are degenerate 
in the sense that they have the same eigenvalue 
spectrum. It turns out, however, that this is not the 
case because 

f/-i1(1J', p)clt2(1J, p) dp = 0, (49) 

as can be easily verified. The adjoint vectors for the 
full range are thus 

(50) 

We choose to present only the results for the 

16 It is obvious that in order to determine oc(TJ) and P(TJ) in terms 
of '1'(",) rather than '1"(",), one must make the proper substitutions 
as indicated in Eq. (43). 

17 The vector '1'_(0, "') is not included in the set of orthogonal 
functions since it is not a solution of Eqs. (47). 
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various normalization integrals, since these calcul­
ations, although they are very straightforward, are 
quite tedious. The Poincare-Bertrand formula as 
given by Kuscer, McCormick, and Summerfield has 
been used to specify the technique for handling the 
double principal value integrals that were en­
countered.1s Defining the full-range scalar product19 

J
l-

<i / j) ~ -1 iPkrj', fl)iP l'Y}, fl) dfl, i, j = +, 1, 2, (51) 

we find 
(i /j) = 0;; -:;6:j = +,1, or2, (52a) 

<+ / +) = 0, (52b) 

(1 10 = 'Y}Q+('Y})Q-('Y})<5('Y} - 'Y}'), (52c) 
and 

(2/2) = 'Y}A+('Y})A-('Y})<5('Y} - 'Y}'). (52d) 

In addition to the above results, we will need, in the 
next section, integrals of the form 

We find 

and 

(i 1-) = fl4»:('Y},fl)'I'-(O,fl) dfl· 

<+I-)=-t 

(53) 

(54a) 

(;1-)=0, i=-,1,2. (54b) 

With all of the necessary formalism and theorems 
now established, we proceed to solve in the next 
section the two problems of interest. 

V. THE HALF-SPACE GREEN'S FUNCTION 
AND THE ALBEDO PROBLEM 

Now that the completeness and orthogonality 
theorems have been established for both the full range 
and the half range. the solutions for the two problems 
of interest can be constructed with a minimum of 
manipulation. The solutions to the homogeneous 
transport equation have already been found, so that 
the only remaining task is to find the expansion 
coefficients such that the boundary conditions are 
satisfied. 

We consider the half-space Green's function. where 
the transport equation takes the form 

fl ~ 'I'(x. ,,) + 'I'(x. fl) 
ox 

= ! II X(fl. fl')'I'(X, fl') dfl' + Q. (55) 
2 -1 

Here the source term is given by 

Q = <5(x - xo)[qo<5(P - flo)J. (56) 
q 1 <5(p - fl1) 

181. Ku§eer, N. J. McCormick, and G. C. Summerfield, Ann. 
Phys. (N.Y.) 30, 411 (1964). 

19 Note that we have used the same symbols here for the full­
range adjoint functions and scalar products as were used in Sec. II 
for the half range. 

In order to have complete generality. one might 
consider that there are two Green's functions: 
one corresponding to q1 = 0 and Xo = Xo. and the 
other to qo = 0 and Xo = Xl' Thus the solution of the 
transport equation for any given source term or 
inhomogenity could be constructed from these two 
Green's functions. However, the Green's function 
developed here includes these two cases. 

We therefore seek a solution to Eq. (1) subject to the 
following boundary conditions3,20: 

(a) The lim 'I'uCxo. flo. fl1 -- X, fl) is to be 

bounded. 

(b) 

fl{'I'g(xci, flo, fll -- x, fl) - '¥ixo. flo, fll -- x, fl)} 

and 

= [Qo<5(fl - flo)J, 
Q1 <5(fl - fll) 

(c) '¥uCxo. flo, fl1 -- 0, fl) = 0 for" > O. 
We construct a pseudoinfinite-medium Green's func­
tion in the forms 

x(Xo, flo, fll -- x, fl) 

= B+iP+ + f B1('Y})e-(X-XO)/'IiP1('Y} , fl) d'Y} 

+ f B2('Y})e-(X-XO)/'IiP2('Y}, fl) d'Y}, x > Xo; (57a) 

and 

x(xo, flo, fll -- X, fl) 

= -B_ 'I'_(x - xo,fl) - f1B1('Y})e(X-XO)/'IiP1('Y},fl)d'Y} 

- flB2('Y})e-(X-Xo)/'IiP2('Y}, fl) d'Y}, x < Xo' (57b) 

We note that X(xo, flo, fll -- X, fl) satisfies boundary 
condition (a); its divergence as X approaches - 00 is 
of no concern since we will consider only X ~ O. 
Applying boundary condition (b), we find that the 
expansion coefficients are to be determined from 

'I'(fl) ~ ![Qo<5(fl - flO)J 
fl Q1<5(fl - fl1) 

= B+iP+ + B_'I!_(O,fl) + flBi'Y})iPi'Y},fl)d'Y} 

+ L: B2('Y})iP2('Y}, fl) d'Y}, fl E [-1, 1]. (58) 

This is simply a full-range expansion in terms of the 
normal modes. Theorem III therefore is applicable. 

20 Note that we replace the inhomogenity introduced by Q by the 
equivalent "jump" condition (b). 
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and the expansion coefficients can be found by taking 
full-range scalar products, e.g., 

B1(1]) = [f1 ii(1] , p,)'J!(p,) dp, ] / [1]0+(1])0-(1])]. (59) 

We find 

B ( ) 
_ qo{i1](1 - p,~)[P/(1] - P,o)] + ).1(1])15(1] - P,o)} 

11] - , 
1]0+(1])0-(1]) 

(60a) 

(-qo!1](1] + P,o) + q1 {i1](1 _1]2)[p/(1] - P,1)] 

B
2
(1]) = + ).2(1])15(1] - P,1)}) 

1]A +(1])A-(1]) 

B+ = ![qoP,o + q1P,tl 

and 

B_ = -l(qo + ql)' 

(60b) 

(60c) 

(60d) 

With these expressions for the expansion coefficients, 
X(xo, P,o, P,1 - x, p,), as given by Eqs. (57), satisfies 
the first two boundary conditions. We propose that 
the half-space Green's function can be written in the 
form 

'J!g(xo ,p'o ,P,l- X ,P,) = x(xo ,P,o ,P,1- X ,P,) - A+~+ 

- fA1(1])e-""~~1(1], p,) d1] 

-f A2(1])e-"'/~~2(1], p,) d'f]. 

(61) 

Stipulating the condition of zero re-entrant radiation, 
boundary condition (c), we obtain the half-range 
expansion 

X(xo, P,o, P,1 - 0, p,) 

= A+ ~ + + fAi1])~i1], p,) d1] 

+ IA2(1])~2(1], p,) d1], P, E [0, 1]. (62) 

Since X(xo, P,o, P,1 - 0, p,) is known and the half-range 
completeness and orthogonality have been established 
through Theorems I and II, the coefficients A+, A1(1]), 
and A 2( 1]) are found by taking, this time, half-range 
scalar products. Thus 

A+ = 1- (\i'lx(xo, P,o, P,l -+ 0, p,) dp" (63a) 
N+Jo 

1 (1- t 
A1(1]) = 8

1

(1]) Jo ~1(1],P,)X(xO,PO,P1-+0,p,)dp, (63b) 

and 
1 (1- t 

A 2(1]) = 8l1]) Jo ~2('f}, p,)X(xo ,P,o ,Pl-+0,P,) dp,. (63c) 

Although the explicit evaluation of the scalar products 
indicated above is a tedious task, it is a straight­
forward one. We illustrate the procedure by further 
developing the expression for A+. 

Inspection of Eq. (57b) shows that for x = ° it can 
be written as 

x(xo, P,o, P,1 - 0, p) = xoB_~ + - B_ 'J! _(0, p,) 

- fB1( -'f])e-"'O/~~1( -1], p,) d1] 

-L1
B 2( -1])e-"'o/~~2( -1], p) d1]. (64) 

It is at once apparent that upon taking the scalar 
product of Eq. (64) with ~~, we encounter integrals 
similar to those that we have already discussed in the 
section on half-range normalization. Therefore, in 
order to proceed, we must evaluate integrals of the 
type 

(1-
Mi{('f)', 1]) ~ Jo ~:(1]', p,)~,( -'f), p) dp" 

1],1]' E [0,1], i = + 1,2 andj = 1,2. (65) 

We note that for 1] and P, E [0, 1], ~;( -1], fit) is not 
singular; the complexity of the above integrals 
is therebygready reduced. We find 

M+1('f}', 1]) = 1]X( -'f}), 

M+2(1]', 1]) = 1](b'f} - a)Y(-1]), 

M n (1]', 1]) = i'f}'f}'[X(-'f])/(1] + 1]')] 

(66a) 

(66b) 

X [1]1]' + c(1] + 'f}') + 1], (66c) 

M 12('f}', 1]) = (15/2b)1]1]' Y( -1]), (66d) 

M 21('f}', 1]) = (3/2b)1]1]'X(-1]), (66e) 

and 

M 22(1]', 1]) = i1]1]'[Y(-1])/('f} + 1]')] 

x [1]'f}' - c(1] + 'f}') + 1]. (66f) 

In addition, the determination of A+, Al (1]), and 
A2(1]) necessitates the evaluation of the three integrals 

t-Md1]') ~ Jo ~I (1]', p,)'J! _(0, p,) dp" 

1]' E [0. 1] and i = +. 1.2. (67) 

These same integrals were encountered in the solution 
to the Milne problem in I. It was found there that 

M+_('f}) = -N+zo = -N+{C + t[Y(I) - Y( -1)] 

3 (1 p3 } 
+ "4 Jo Y( _p) dp. (68a) 

(68b) 
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and 
M 2j'f}) = -'f}('f} - c). (68<.:) 

Here Zo is the Milne problem extrapolation distance. 
The solution for the expansion coefficient A+ can 

now be expressed in terms of known functions; we 
find 

A+ = Bjxo + zo) + - B1( -'f})e-xo/q'f}X( -'Y}) d'Yj 3 i1 
2b 0 

+ - Ba( -'Yj)e-xo/q'f}(b'f} - a)Y( -'Yj) d'Yj. (69) 3 i1 
2b 0 

The coefficients AI('Yj) and A 2('f}) can be determined in 
a completely analogous manner. For the sake of 
brevity we present only the final results. We find 

'l'g{xo, Po ,/11 -+ x, p) 

where 

= T+eIl+ + f T1('f})e-x/
q
ell1CI), p) d'f} 

+ Sol T2(I)e-x/qelll'Yj, fl) d'Yj, x > xo, (70a) 

(70b) 

(70e) 

T2('Y}) = B2(I)exo/q - A2('Yj). (70d) 

For x < xo, we obtain 

'l'g(xo, Po, fl1 -+ X, fl) 

= Q+ ell + - f [Bl( -'Y})e-<xo-x)/qelll( -'Y}, p) 

+ Al('f})e","x/qelll('f}, p)] d'Yj 

- Ll [B2( -'Y})e-(xo-x)/qell
2

( -'f}, p) 

+ A2('Yj)e-x/qella('Yj, p)] d'f}, x < xo, (71a) 
where 

A ( ) ___ l_[lS'Y} ( ) 
1 'Y} - Sl('Yj) 4b qo + ql 

+ fo1BI( -t)e-xo/tM l1('f}, t) dt 

+ fB2( -t)e-xo/tM12('f}, t) dt} (71c) 

and 

A2('f}) = - S2~'f})[ !(qo + ql)'Yj('Y} - c) 

+ fo1BI( -t)e-xo/tM2l('Yj, t) dt 

+ fo
l
B2( -t)e-xo/tMaz('Yj, t) dt]. (71d) 

The solution to the half-space Green's function 
corresponding to the source Q is thus complete. 

The fact that the solution is complicated might have 
been anticipated, since the class of problems for which 
it could be used to generate solutions is a very broad 
one. 

Let us now consider the somewhat simpler albedo 
problem.2l Here we seek a solution to Eq. (1) subject 
to the following boundary conditions; 

(i) 'l'a(O, p) = [S013(fl - flO)] for p, flo, and PI :2 ° 
Sl13(P - PI) 

and 
(ii) 'l'a(x, fl) must remain finite as x increases 
without bound. 

We immediately write the normal modes that satisfy 
condition (ii); thus 

'l'aCx, p) = A+ ell + + fCX('Y})e-xfqelll('f}, p) d'Yj 

+ f p('f})e-X
,
qell2('Y}, p) d'Yj. (72) 

In order to determine the expansion coefficients, we 
apply condition (i) to obtain 

[
so13(P - po)J = A+ ell + + (lCX('Y})eIl

1
('Yj, p) d'f} 

Sl (j(p - PI) J 0 

+ IIp('f})eIl2('Yj, p) dfj, fl > O. (73) 

Taking half-range scalar products of Eq. (73), we find 
the following results for the expansion coefficients; 

3 
A+ = 2b [SlY2(Pl)(a + bpI) - SOYl(PO)], (74a) 

cx('f}) = [Sl('Yj)]-l{SOYl(flo)[!'f}(l - 'Yj2)[P/('f} - flo)] 
+ A,1('Yj)13('f} - flo) + !'f}(e + 'f})] 

+ sl(IS'f}/2b)Y2(Pl)}, (74b) 
and 

P('f}) = [S2('f})]-1{so(3'Yj/2b)ytCPo) + SlY2(Pl) 
x [!'f}(l - flmp/('f} - fll)] + A,2('Yj)(j('Y} - fll) 

- !"l(e + PI)]}' (74c) 
With the expansion coefficients thus determined, the 
solution is completed. 
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'1 Although the albedo problem was sketched in I, the explicit 
results were not given there. 
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